Novel Low-Cost and Environmentally-Friendly Synthesis of Core-Shell Structured Micro-Particles for Fossil Energy Applications

Abu Kamara
Department of Chemistry
Howard University
Project Team

Howard University (MOCVD Particle Growth)
PI-Jason Matthews, PhD
Abu Kamara (G)
Oluwaseun Falola (G)
Alyssa Buchannan (U)

The Ohio State University (Ionic Diffusion)
L.S. Fan, PhD
Cheng Chung (G)
Liang Zeng, PhD
Zhenchao Sun, PhD
OUTLINE

• Introduction
• Background
• Methodology
• Results
• Conclusion
Introduction

- Core-shell structured particles
 - Energy, Catalysis, Pharmaceutical Science and Physics
 - Nano-and biomaterial applications
- Synthetic approach
 - Coating Process – Application of shell material onto the core
- Core-shell structure exhibits high surface area and catalytic-like properties

Simplified illustration of a typical core-shell structured particle
Proposed Synthetic Methods

• **Metal Organic Chemical Vapor Deposition (AP-MOCVD)**
 • Utilize a low cost hot walled reactor as an alternate route for the preparation of core-shell structures.
 • Metal organic precursors

• **Ionic Diffusion via Redox Cycles**
 • Utilize the movement of atoms during redox, forming a core-shell like structure
 • In depth testing of different metal oxides particles under redox environment

Potential Significance

• Cost effective method
• Improved catalytic activity
• Potential application in Chemical looping combustion/gasification, and sorbent-based fossil fuel
Metal Organic Chemical Vapor Deposition (AP-MOCVD)

Schematic illustration of a horizontal CVD hot-wall reactor

- Carrier gas
- Precursor
- Oven
- Glass rod
- Exhause
- Nitrogen line
- Heating tape
- Quartz tube
- Heat regulator
- Tube furnace
- Hood
- HW-Reactor
Physicochemical reactions processes in the CVD Reactor: STEP (1&2)

Chemical Vapor Deposition - Step 1
Vaporization and Transport of Precursor Molecules into Reactor

Chemical Vapor Deposition - Step 2
Diffusion of Precursor Molecules to the Surface
Chemical Vapor Deposition - Step 3

Adsorption of Precursor Molecules to Surface

Chemical Vapor Deposition - Step 4

Decomposition of Precursor and Incorporation into Solid Films
Chemical Vapor Deposition - Step 5

Recombination of Molecular Byproducts and Desorption into Gas Phase
Chemical Looping Technology
Catalytic process that converts fossil fuels into energy and CO₂ without extra energy consumption

Chemical looping combustion – gaseous fuel. Solid fuels in CLC with steam as gasification agent.

Proceedings from AIChE Meeting 2010, Salt Lake City, Utah, U.S.A., November 7-12, 2010

Chemical Reactions

\[(2n+m)\text{Me}_x\text{O}_y + C_n\text{H}_{2n} \rightarrow (2n + m)\text{Me}_x\text{O}_{y-1} + n\text{CO}_2 + m\text{H}_2\text{O}\] \((1)\)

\[(n + m)\text{Me}_x\text{O}_y + n\text{CO} + m\text{H}_2 \rightarrow (n + m)\text{Me}_x\text{O}_{y-1} + n\text{CO}_2 + m\text{H}_2\text{O}\] \((2)\)

\[2\text{Me}_x\text{O}_{y-1} + \text{O}_2 \rightarrow 2\text{Me}_x\text{O}_y\] \((3)\)

\[(2n + 1)\text{H}_2 + n\text{CO} \rightarrow C_n\text{H}_{2n+2} + n\text{H}_2\text{O}\] \((4)\)
Statement of Project Objectives

• Synthesize stronger and more chemically reactive particles for use in fossil energy applications

• Synthesize and characterize Fe$_2$O$_3$-shell/Al$_2$O$_3$-core micro-particles prepared via the cyclic ionic diffusion and AP-MOCVD methods.

• Gain control of shell thickness

• Comparison of morphology, mechanical strength, and reactivity of synthesized core-shell structured particles synthesized via vapor deposition and ionic diffusion
Platform of β-ketoiminate ligand for the synthesis of the precursor

Tunable β-ketoiminate ligand backbone

TGA- bench mark thermogram for precursor synthesis
MOCVD-Precursor Requirements

- Volatile and thermally stable
- Inexpensive and simple to synthesize
- No premature decomposition of the precursor prior to reaching the substrate

Advantages of AP–MOCVD

- Films with uniform thickness under mild conditions (<700°C)
- High quality thin films with less impurities
- High growth rate
- Highly crystalline films
Synthesis and Characterization of β- Ketoimines

\[
\begin{align*}
\text{β-diketone} & \quad + \quad \text{R’-NH}_2 \\
& \quad \xrightarrow{\text{reflux 1hr}} \quad \text{Diethyl ether} \\
& \quad \quad \xrightarrow{\text{}} \quad \text{β-Ketoimine} \\
& \quad + \quad \text{H}_2\text{O}
\end{align*}
\]
Synthesized Free ligands

$R' =$
1. Isopropyl
2. Isobutyl
3. Butyl
4. Cyclopentyl
5. Cyclohexyl
6. Methoxypropyl
7. t-butyl
8. Propyl

$R =$
1. CH_2CH_3
2. CH_3
Synthesis of Fe(III) Complex

R' R'' R'''

1. KOH/EtOH
2. FeCl₃/H₂O

R' R'' R'''
17 CH₃ CH₃CH₂O (CH₃)₂CHN
18 CH₃ CH₃O (CH₃)₂CHN
19 CH₃ CH₃O CH₃CH₂CH₂N
20 CH₃ CH₃CH₂O (CH₃)₂CHC H₂N
27 CH₃ CH₃CH₂O CHN
30 CH₃ CH₃O CH₃OC H₂CH₂CH₂N
31 CH₃ CH₃ O
TGA- thermogram of complex 18
exhibit less volatility and stability

Structure of complex 18
Tris(methyl-3-(isopropyl)amino-2-butenoato)iron(III)

TGA: of complex of complex 18
TGA- thermogram of complex 31 exhibit higher volatility and minimal decomposition

Structure of complex 31
Tris(2,4-pentanedionato)iron(III)

TGA: of recrystallized iron complex 31

Fe(acac)₃
TGA- thermogram of Iron (III) oxide precursor 33 exhibit higher volatility and minimal decomposition.

TGA: of recrystallized iron complex 33

Structure of complex 33
Tris(1,2-diphenylpropane-1,2-dionato)iron(III)
Coating mode of Particle
 • Gas-solid contact in the CVD Reactor

Rotary Bed

Evaluation of the synthesized Iron(III)oxide β-diketonate MOCVD precursor
Evaluated TGA thermogram of Iron (III)oxide precursor

Complexes 31 and 33 β-diketonate exhibit higher volatility and stability

TGA: of complex 31

TGA: of complex 33
Determination of Source and Decomposition Temperatures

AP-MOCVD hot wall reactor with deposited iron oxide at 220°C

Temperature distribution profile in the Hot-Wall Reactor
(Gas flow changes the temp. profile slightly)

Isothermal zone

Mushin E.A, chemical vap. Deposition 11.07.2007 p(23)
SEM micrograph of Fe$_2$O$_3$ coated Al$_2$O$_3$ particle at 220°C

(a) 50 x

(b) 200 x

(c) Fe$_2$O$_3$ coated Al$_2$O$_3$ at substrate temperature of 220°C.

(d) Fresh uncoated Al$_2$O$_3$
Elemental composition analysis of Fe_2O_3 coated Al_2O_3 particle determined by EDS

(a) Before Annealing

<table>
<thead>
<tr>
<th>Element</th>
<th>Relative atomic Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (Al)</td>
<td>31</td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>65</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>3</td>
</tr>
</tbody>
</table>

(b) After Annealing at 300°C for 30 minutes

<table>
<thead>
<tr>
<th>Element</th>
<th>Relative atomic Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (Al)</td>
<td>42</td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>52</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>6</td>
</tr>
</tbody>
</table>
MOCVD Growth Optimization and EDS Analysis

Four CVD growth cycles with deposition temperature 220° – 360°C at 20°C interval
annealed at 500°C for 30 minutes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Iron</th>
<th>Oxygen</th>
<th>Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(2)</td>
<td>1.91</td>
<td>58.41</td>
<td>36.64</td>
</tr>
<tr>
<td>P(3)</td>
<td>0.80</td>
<td>53.09</td>
<td>40.79</td>
</tr>
<tr>
<td>P(5)</td>
<td>3.13</td>
<td>63.71</td>
<td>29.71</td>
</tr>
</tbody>
</table>
Synthesized Iron(III)oxide Precursor 45
Tris(2,2,6,6-tetramethyl -3,5-heptanedionato)iron(III)

Molecular structure of Fe(thmd)$_3$
Iron(III) Complex 45

TGA: after recrystallization in acetone/ water solution
Elemental composition of Fe_2O_3 coated Al_2O_3 as determined by EDS after annealing at 500°C for 30 minutes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Deposition temp. °C</th>
<th># cycles</th>
<th>Iron</th>
<th>Oxygen</th>
<th>Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>240</td>
<td>4</td>
<td>1.98</td>
<td>55.25</td>
<td>41.92</td>
</tr>
<tr>
<td>T2</td>
<td>280</td>
<td>4</td>
<td>14.61</td>
<td>57.41</td>
<td>27.98</td>
</tr>
<tr>
<td>T3</td>
<td>300</td>
<td>4</td>
<td>2.51</td>
<td>60.39</td>
<td>37.11</td>
</tr>
<tr>
<td>T4</td>
<td>320</td>
<td>4</td>
<td>9.71</td>
<td>52.51</td>
<td>37.78</td>
</tr>
<tr>
<td>T5</td>
<td>340</td>
<td>4</td>
<td>1.62</td>
<td>67.99</td>
<td>30.39</td>
</tr>
<tr>
<td>T03</td>
<td>360</td>
<td>10</td>
<td>75.53</td>
<td>18.0</td>
<td>6.47</td>
</tr>
</tbody>
</table>
SEM micrograph of Core-Shell particle derived from sample T03 after 10 CVD cycles

a) x10,000

b) x20,000

c) x30,000

d) x50,000
EDS Spectrum of Sample T03 after 10 CVD Cycles
Future work

• Increasing the number of CVD cycles utilizing the Fe(thmd)$_3$ precursor in order to form a high quality iron oxide shell.

• The synthesized particles will be evaluated for their catalytic activity.
Shell-Formation Mechanism

Ionic Diffusion via Cyclic Redox Cycles
Experimental Method

In Thermo-gravimetric Analyzer (TGA)

Reduction
- H2 balanced with N2

flushing
- Nitrogen

Oxidation
- Air

Complete Reduction and Oxidation during cyclic reaction at 900 Celsius. Dashed line represent temperature. Red double arrow represents reduction and blue double arrow represent oxidation.
Parametric Study

Particle Size
- 2 mm
- 0.35 mm

Number of cycles
- 40 cycles
- 100 cycles

Percent iron loading balanced with aluminum oxide
- 40% Iron Oxide
- 20% Iron Oxide

However, the iron-rich shells formed were too thin to be distinguished between different micro-particles. A better method is needed.
Improving Ionic Diffusion

- Reducing gaseous oxygen concentration during oxidation
 - Maintain reduced iron gradient in the particle and prevent iron from being oxidized before diffusion toward the surface

- Increasing nitrogen flushing time
 - Allowing more time for iron to diffuse per redox cycle before being oxidized
SEM and EDAX Analysis on a fractured micro-particle with longer flushing time

Distinguishable phases observed with SEM at the edge of the fractured micro-particle.
Summary and Future Work

- An improved method was developed to encourage iron diffusion toward the surface.

- SEM and EDAX spot analysis revealed observable phase separation on micro-particles with longer flushing time.

- Effect of lowering oxygen concentration during oxidation will be studied.
Acknowledgements

• DOE-NETL DOE-FE0011515
• Howard University Graduate School
• Ohio State University