Graphene-Based Composite Sensors for Energy Applications

Presented By Charter D. Stinespring Associate Professor Chemical Engineering Department West Virginia University

Prepared For 2015 NETL Crosscutting Research Review Meeting

27 - 30 April 2015

Overview Of Presentation

Background

Graphene As A Sensor Material Hypothesis, Goals, & Research Issues Roadmap & Overview of Project

Update on Key Research Areas

Graphene Synthesis & Device Fabrication Nanoparticle Nucleation & Growth Electrical Characterization of Graphene Films & Sensors

Future Work

High Temperature Test Unit Graphene-Nanoparticle Composite Sensors

Graphene As A Sensor Material

Structure of graphene

- Monolayer of sp² bonded C-atoms
- p orbitals normal C-monolayer
- Ideally one layer but frequently multilayers

Attributes as gas sensor material

- High charge carrier mobility
- Low charge carrier density / altered by adsorption
- Chemoresistive graphene gas sensors should have a high sensitivity and rapid response

Top View

Basic Question: How can target specificity be achieved?

Fundamental scientific issue addressed in this research

Basic Hypothesis of this Research

Basic Hypothesis

Gas adsorption mediated by different types of nanoparticles attached to independent chemoresistive graphene sensors can yield a unique <u>electrical response pattern</u> for each adsorbed species.

Research Goals

Validate the hypothesis for graphene-nanoparticles (G-nP) composites

Develop a G-nP composite "<u>electronic nose</u>" for energy applications

Research Issues

Synthesis of graphene & G-nP composites Fabrication of sensor structures Characterization of thin film & sensor properties

Roadmap & Overview of Project

Synthesis of graphene films Patterning & contact deposition Nucleation & growth of nanoparticles Characterization of electrical properties

Overview Of Presentation

Background

Graphene As A Sensor Material Hypothesis, Goals, & Research Issues Roadmap and Overview of Project

Update on Key Research Areas

Graphene Synthesis & Device Fabrication Nanoparticle Nucleation and Growth Electrical Characterization of Graphene Films & Sensors

Future Work

High Temperature Test Unit Graphene-Nanoparticle Composite Sensors

Synthesis Of G/SiC Films

Stinespring & coworkers, J. Vac. Sci. Technol. 30 (2012) 030605.

Surface Chemistry of AP-RTA G/SiC Films

Stankovich et al., Carbon 45(2007)1558-1565.

Post Synthesis Surface Modification

The ability to control the surface defects is important since they influence electrical properties & serve as sites for particle nucleation

Device Fabrication

- Grow uniform G/SiC film on
 1 cm × 1 cm substrate
- Use shadow mask & oxygen ICP-RIE to remove graphene & form SiO_x strips while protecting 2 mm x 2 mm graphene regions
- Use shadow mask and e-beam evaporation to produce Au/Ti device patterns
- Use wafering saw to produce
 2.5 mm × 2.5 mm die for testing
- TLM pattern electrical properties
- Sensor pattern sensor testing

Nanoparticle Nucleation & Growth on Graphene

Solution based nanoparticle nucleation and growth chemistries

Studies to date include Ag, Au, Pt, Ir, TiO₂ nanoparticles

Simple Reaction Mechanisms

 $AgNO_3 + NaBH_4 \Rightarrow Ag + \frac{1}{2}H_2 + \frac{1}{2}B_2H_6 + NaNO_3$

<u>Simple</u> Preparation Sequence

Immerse graphene in (10mM AgNO₃/H₂O) Add reducing agent (25mM NaBH₄/H₂O) Incubate mixture at room temperature Remove & wash in DI water

Key Parameters

Solution concentrations Incubation time

Surface defect levels

Ag Nanoparticle Nucleation & Growth

Au Nanoparticle Nucleation & Growth

100 nm x 100 nm AFM Image of Au nP/G/SiC (S170) RMS ~ 0.2 nm

- Ultrasonically removed particles are spheroidal
- Associated with homogeneous nucleation & deposition from solution
- Attached nPs are pyramidal
- Suggests heterogeneous nucleation with Volmer-Webber growth

Particle Size Distributions

Sensor Platform and Test Unit

- Sensor mounted on microheater with RTD for control of temperature (≤700 °C)
- Sensor platform mounted in test unit

16 Pin Transistor Outline Header

- Used for electrical characterization of both films & sensors

Electrical Characterization of Graphene Films

- **E** Four point characterization
 - Select four collinear contacts
 - Obtain I-V characteristics

Sensor Characterization

- Two point characterization
- Select source and drain contacts
- Measure two point I-V characteristics

Overview Of Presentation

Background

Graphene As A Sensor Material Hypothesis, Goals, & Research Issues Roadmap and Scope of Project

Update on Key Research Areas

Graphene Synthesis & Device Fabrication Nanoparticle Nucleation and Growth Electrical Characterization of Graphene Films & Sensors

Future Work

High Temperature Test Unit Graphene-Nanoparticle Composite Sensors

High Temperature Test Unit

Goals for high temperature unit

- Constant temperature test bed
- Temperatures 700 1000°C+ range

Graphene-Nanoparticle Composite Sensors

Goals for G-nP sensor studies

- Standardize fabrication
 Control nP size distribution
 Control surface coverage of nP
- Characterize G-nP sensor response Sensitivity Selectivity

- Extend measurement range Temperatures to 1000°C+ Additional nP systems Additional gas species
- Future applications areas
 Temperature sensors
 Pressure sensors
 Liquid species sensors

Acknowledgments

University Coal Research Program

- DOE Award Number: DE-FE0011300

PhD Students

- Saurabh Chaudhari Graphene synthesis & sensor fabrication
- Andrew Graves Sensor characterization

Undergrad Students

- Megan Cain Particle nucleation and growth
- Jason Miles Particle nucleation and growth (grad spring 2014)
- McKenzie Mills Surface modification (grad spring 2014)

WVU Shared Research Facilities

- NSF EPSCoR Research Infrastructure Improvement Cooperative Agreement
- WV EPSCoR / Higher Education Policy Commission & WVU

QUESTIONS

"Perhaps one of you *gentlemen* will tell me just what you find so attractive outside that window . . . ?"

