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Challenge: Accelerate Development/Scale Up

Traditional time to deploy new technology in the power industry
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Accelerated deployment timeline

5 Process Scale Up
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Quantify sources and
effects of uncertainty to
guide testing & reach

Stabilize the cost
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Goals & Objectives of CCSI

Develop new computational tools and models to enable industry to

more rapidly develop and deploy new advanced energy
technologies

— Base development on industry needs/constraints

Demonstrate the capabilities of the CCSI Toolset on non-
proprietary case studies

— Examples of how new capabilities improve ability to develop
capture technology

Deploy the CCSI Toolset to industry
— Initial licensees
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CCSI Toolset Workflow and Connections
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Framework for Optimization, Quantification of Uncertainty and Sensitivity

Samples

ALAMO Simulation Optimization IREVEAL
Heat D-RM
Surrogate Based Inteqration uQ Under Builder Surrogate
Models Optimization g Uncertainty Models
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FOQUS

Framework for Optimization Quantification of Uncertainty and Sensitivity

Meta-flowsheet: Links simulations, parallel execution, heat integration

UQ Analysis

‘Optimization Runs

Data Maﬁag‘ement
Framework

Kinetic Model

Experimantal
Data

Results
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Turbine

Parallel simulation execution
management system
Desktop — Cloud — Cluster

SimSinter Config

<>

GUI
V /
SimSinter Simulation
Standardized interface for Aspen
simulation software gPROMS
Steady state & dynamic Excel

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings

of the 8th Foundations of Computer Aided Process Design Conference — FOCAPD 2014. M. R. Eden, J. D. Siirola and G. P. Towler Elsevier.
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Optimization with Heat Integration

w/o heat
Integration Sequential Simultaneous

Net power efficiency (%) 31.0 32.7 35.7
Net power output (MW,) 479.7 505.4 552.4
Electricity consumption® (MW,) 67.0 67.0 80.4
IP steam withdrawn from power cycle (MW,,) 0 0 0

LP steam withdrawn from power cycle (MW,,) 336.3 304.5 138.3
Cooling water consumption® (MW,,) 886.8 429 .3 445 .1
Heat addition to feed water (MW, 0 125.3 164.9

Base case w/o CCS: 650 MW, 42.1 %

Y. Chen, J. Eslick, I.LE. Grossmann, D.C. Miller, “Simultaneous Process Optimization and Heat Integration Based on Rigorous Process Simulations”,
Computers & Chemical Engineering, Accepted, April 23, 2015.
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Uncertainty Quantification for Prediction Confidence

= Now that we have
» A chemical kinetics model with quantified uncertainty
« A process model with other sources of uncertainty
« Surrogates with approximation errors
» An optimized process based on the above

» UQ questions

 How do these errors and uncertainties affect our prediction
confidence (e.g. operating cost) for the optimized process?

e Can the optimized system maintain >= 90% CO2 capture in the
presence of these uncertainties?

* Which sources of uncertainty have the most impact on our prediction
uncertainty?

« What additional experiments need to be performed to give acceptable
uncertainty bounds?

CCSI UQ framework is designed to answer these questions
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Optimization Under Uncertainty
using a Two-Stage Approach

Design Phase Operating Phase

Uncertain parameters are
characterized probabilistically

Uncertain parameters have
been realized

Optimize design variables while
taking into account uncertainty
of unknown parameters

Optimize operational variables
In response to realized
uncertain parameters

Bubbling  Design Variables: Uncertain Parameters: Operational Variables:
Fluidized * Absorber/regenerator « Flue gas flowrate (load-following) * Steam flowrate
dimensions « Flue gas composition (fuel type) « Cooling water flowrate
Bed (BFB) Heat e s LOHIP y . . :
. xchanger areas « Reaction kinetics * Recirculation gas split
System and tube diameters ; fraction

min,  COE(BEBIX)___ [N 6  uncortainparametera
subject to CO, capture > 90% G(COE (BFB, X ,0))
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Solid Sorbents Models & Demonstration

 Basic data models Process models
— SorbentFit (1t gen model) * = 5 — Bubbling Fluidized Bed Reactor Model

— SorbentFit extension for packed beds — Dynamic Reduced Order BFB Model

— 2nd generation sorbent model which — Moving Bed Reactor Model
accounts for diffusion and reaction — Multi-stage moving bed model
separately — Multi-stage Centrifugal Compressor

« CFD models Model

— Attrition Model — Solids heat exchanger models

— 1 MW bubbling fluidized bed adsorber — Comprehensive, integrated steady
with quantified predictive confidence state solid sorbent process model

— High resolution filtered models for — Comprehensive, integrated dynamic
hydrodynamics and heat transfer solid sorbent process model with
considering horizontal tubes control

— Validation hierarchy

— Comprehensive 1 MW solid sorbent
validation case via CRADA

— Coal particle breakage model with
validation
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Building Predictive Confidence for Device-scale CO,

Capture with Multiphase CFD Models

Clean Gas
to Stack €02 to Sequestration . . .
CCSI CFD Validation Hierarchy
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Hierarchical Calibration of Unit Problems Upscaled Prediction

Unit Problem 1: 32D Cold Flow Unit Problem 2: 32D Hot Flow Unit Problem 3: 32D Reacting Flow IMW Predictions
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Solvent System Models & Demonstration

 Basic data models « Process models
— Unified SorbentFIT tool to calibrate — “Gold standard reference” process
solvent data model, both steady-state and dynamic
— High Viscosity Solvent Model, 2-MPZ — Methodology for calibration/validation
— Properties model for Pz/2-MPz Blends of solvent-based process models to
(Aspen) support scale up

e CFD models

Simulated Temperature Profiles in Absorber for Vapor Phase

— VOF Prediction on Wetted Surface . l | _ PO l |
— Prediction of mass transfer coefficients e il |
by calibration of fully coupled wetted ul 1
wall column model -
Eler o
— Preliminary CFD simulation of a solvent £ |
based capture unit 2 ]
— Validation hierarchy 5. ]
& Experimental data
4k —ProTreat
—CO02SIM
oL ——AspenRadFrac ||
—CHEMASIM
. e : e ; i ——AspenRatesep
940 45 50 585 60 65 70 75 80 85

Temperature

Luo et al., “Comparison and validation of simulation codes against sixteen sets of data from four different
pilot plants”, Energy Procedia, 1249-1256, 2009
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Integrated Mass Transfer Model Development

» Diffusivity, viscosity, surface tension, interfacial area, and mass transfer
coefficients all important

« Data from both wetted wall column and packed column considered
« Simultaneous regression of these models not previously possible in Aspen
« FOQUS has the capability of simultaneous regression

Usual approach: Sequential regression 12

[ > 06 Might not exactly
Optimized model for predict the data of an

wetted wall column 03 absorber column
experiments

0 15 30 45 60
0 15 30 45 60

FOQUS capability: Simultaneous regression

ABSORE WWWC FOQUS can run multiple
simulations and optimize an
unique model for mass
transfer and interfacial area
REGRESSION
‘ = 3 S, U.S. DEPARTMENT OF
NSTL 21 (Sretemes Cane o () ENERGY
w7 = — National Laborato . A
' Carbon Capture Simulation Initiative ry NNNNNNN lL! ’I.'»'\:JD aaaaaa Nort hWESt > £ 13



CCSI Team Conducted Tests at NCCC

PSTU Flow Diagram
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