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Project Overview

Objective: design and build a prototype compact high-temperature
ceramic heat exchanger as a key component for high efficiency
advanced power generation systems

Strategy: Leveraging materials, modeling, and additive manufacturing
technologies to solve fabrication and system integration challenges

Target:
Operation > 1500 °F (816 °C)
25% microturbine thermal cycle efficiency improvement
60% welight to volume reduction compared to metal HEX
Scalable fabrication for implementation



Project Overview: o5
Tasks

Project management — Ceralink
Manage and direct project management plan
Update PMP as necessary

HEX modeling & optimization — UTRC
Thermo-fluid Modeling
Thermal Stress Model Development
Design Optimization for Prototype Fabrication

Fabricate HEX prototypes — Ceralink
Materials Selection and Tape Fabrication
Build Sub-Scale Prototypes via Additive Manufacturing
Property and Performance Characterization
Fabricate Full-Scale Prototypes via Additive Manufacturing

Investigate system level challenges — Ceralink
Sealing of Heat Exchangers for Testing
Cost Projections

HEX performance validation — UTRC
Commission high temp test rig = measure and validate performance of prototypes



Additive Manufacturing

Laminated Object Manufacturing

*See Dr. Shulman’s article Ceramic Industry Magazine Dec 2012

e LOM builds 3D parts from 2D ceramic tapes
e Precision cut with laser, tangential smoothing, precision stack
e Functional grading by changing tape composition

____CAM-LEM
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Prototype Fabrication
CAM-LEM Capabilities s== ==
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Materials Selection

Considerations

e Materials properties
e Thermal conductivity, strength, toughness, thermal expansion

e Attaching ceramics to metal
e Thermal expansion mismatch

e Ease of fabrication

e Candidates:
e Aluminum Nitride
e Zirconia toughened mullite



Material Selection:
Design Trade-Off Study

Optimized HX performance for various material options

Inconel Aluminum Nitride Zr0, (+Y,0,) Stainless Steel
Thermal conductivity (W/mK) 12 180 2 40
Density (kg/m?3) 8190 3260 5900 7480
Weight (kg) 3.57 1.36 2.49 3.14
Effectiveness 0.55 0.66* 0.42 0.62
Heat transfer (kW) 32 39 24.5 36.5
*initial program target

Marginal returns for > 30 W/mK
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Sizing optimization for fixed:
* Fin design
» Inlet conditions
* Pressure drop constraints
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f Mixture: AIN 51%, ZrO: 49%
Aluminum Nitride - AIN
Zirconium Nitride - ZrN
M t n I S I t ] ZrAl:0:N
- Linear Theo. Linear Theo. -I
Shrinkage Density Shrinkage Density |
AN 3% 68% 2% 71% 1800, 1 hr |
AN +Y,0,  10% 81% 8% ~84% 1800, 1 hr N2 M\‘ ’ﬁ
AIN/ZrO S uu“’“ bt el
(76/;4)2 12%  91% 10%  93% 1800,1hr N, /" B ’ K ! ? "
Mullite - AlsSi:O::
ANIZIO, 1606 08%  14%  94% 1800,1hr N, Tetragonal Zirconia - Zr:
(51/49) ? Monoclinic Zirconia - ZrO:
ZrO, 22%  ~99% 16%  ~99% 1800,1hr N,
M2-ZTM 16% 93% 1550, 4 hr  Air
MS=ZTIM = = o70n | 98% 1550, 4 hr  Air
(tape)
N 1570, 4 hr  Air
(tape)
» Zirconia toughened mullite (ZTM)
selected for prototype fabrication

> Compatible with ZrO, firing, no side reactions

*Composition distribution by vol%



Prototype Fabrication
Sub-Scale Prototype

e Laminated object manufacturing (LOM) - accurate fine features #TM testpart

e Robust nature inspired honeycomb design:

e Explore materials handling challenges
e High connectivity between fins - stability of individual layers

e Successfully fired to high density
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Characterization: eset
Macro Delamination -4

Delamination caused by binder burnout
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Macro-defects eliminated with slow binder removal step@
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Characterization:

Micro Delamination

Solved by cleaning step
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> Particulate in delamination defects
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» No differentiation between layers
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Prototype Fabrication

Cleaning step

Cutting process Cut part with debris
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IFAMEE:

After cleaning




Design of Heat Exchanger

Trade-Off Study: Geometry

Thermal optimization
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e TC > 30 W/mK, marginal returns

e Effectiveness increases with dP

Effect of;:
Fin Thickness
0.6—— ‘ ‘ ‘

HX effectiveness
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Hot side pressure drop (psi)
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Fin thickness (micron)

e Thinner fins, higher fin density
e Higher dP
e Higher effectiveness

Effect of:
Channel Width
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Hot side pressure drop (psi)

Channel gap (micron)

e Narrower channels
e Higher dP
e Higher effectiveness

> Thinner fins and smaller gaps give better effectiveness performance
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> Thicker and shorter fins reduce thermal stress

> Unfavorable for thermal and pressure drop performance iy ynited Technologies
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Heat Exchanger Design T
Refinement o
3. Fin design modification == #

4. Fin design modification
(thicker, shorter fins — thermal stress modeling)

(fin strip connectivity in tape layers)

Design optimization
for manufacturability
and performance

d http://www.thermopedia.c
om/content/1036/

Plain

2. Fin design selection
(plain fins - manufacturability)

5. Final sub-scale prototype
(2inx2inx1in)
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HX Effectiveness
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Prototype Fabrication

Design & Manufacturing Process Evolution

1. Long thin cantilever fins 2. Straight supported fins

' ? ﬁ - = e Orphan fins
i :E_ e No external support

e Distortion and tearing during:
e Process handling
e Cutting - aborted

- Waste material removed

Cut fins (ceramic tape

4. Supported fins with sacrificial strut
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e Orphan fins
e Distortions in fired part
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Prototype Fabrication

Sample Success and Learning




Summary

Feasibility of LOM for highly complex ceramic heat exchangers demonstrated
Material characterization was used in concert with design development

Causes of delamination were eliminated by:
e Decreasing binder burnout rate
e Use of tape cleaning step

Distortion of fine features was prevented:

e 1) Unsupported heat exchanger fins - mitigated by design optimization

e 2) Transport of cut tapes = minimized by design and process improvements
e 3) Friction of part during shrinkage = solved by use of smooth firing surface
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