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Project Overview
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Objective
Address the technical hurdles to developing a solid sorbent-based 

CO2 capture process by transitioning a promising sorbent chemistry 

to a low-cost sorbent suitable for use in a fluidized-bed process 

This project combines previous

technology development efforts:

RTI (process) and PSU (sorbent)

$
Project Funding: $3,847,161

• DOE Share: $2,997,038

• Cost Share: $850,123


Period of Performance:

• 10/1/2011 to 12/31/2015

• Project management

• Process design

• Fluidized-bed sorbent

• PSU’s EMS Energy Inst.

• PEI and sorbent

improvement

• Masdar New Ventures

• Masdar Institute

• TEA of NGCC

application
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Solid Sorbent CO2 Capture

Advantages

• Potential for reduced energy loads and
lower capital and operating costs

• High CO2 loading capacity; higher
utilization of CO2 capture sites

• Relatively low heat of absorption; no heat
of vaporization penalty

• Avoidance of evaporative emissions

• Superior reactor design for optimized and
efficient CO2 capture performance

Challenges

• Heat management / temperature control

• Solids handling / solids circulation control

• Physically strong / attrition-resistant

• Stability of sorbent performance
4

70ºC 110ºC

Sorbent Chemistry (PEI) 

Primary:        CO2 + 2RNH2 ⇄ NH4
+ + R2NCOO-

Secondary:   CO2 + 2R2NH ⇄ R2NH2
+ + R2NCOO-

Tertiary: CO2 + H2O + R3N ⇄ R3NH+ + HCO3-

Technology Features

• Sorbent: supported polyethyleneimine

• Process: fluidized, moving-bed
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Start w/ preliminary economic screening

Start w/ process engineering analysis Start w/ promising sorbent chemistry

Technical Approach & Scope
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Sorbent 
Development

Economics

Process 
Development

• Concluded that circulating, 

staged, fluidized-bed design

exhibits significant promise.

Development Needs:

• Optimize reactor design and

process arrangement.

Development Approach:

• Detailed fluidized bed

reactor modeling.

• Bench-scale evaluation of

reactors designs.

• Demonstration of process

concept.

• PSU’s Molecular Basket

Sorbents offer high CO2

loading; reasonable  heat of

absorption (66 kJ/mol).

Development Needs:

• Improve thermal stability.

• Reduce leaching potential.

• Reduce production cost.

• Convert to fluidizable form.

Development Approach:

• Modify support selection.

• Simplify amine tethering.

• Scalable production methods.

• Conducted detailed technical and economic evaluations

• Basis: DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants

• Further reduction needed  reduced power consumption & capital cost
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Technology Development Approach

Prototype Testing (2015)

PrototypeTesting

 Milestone: Operational prototype capable of 90% CO2 capture

 Milestone: Completion of 1,000 hours of parametric and long-

term testing

Updated Economics

 Milestone: Favorable technical, economic, environmental study

(i.e. meets DOE targets)

Proof-of-Concept / Feasibility

Laboratory Validation (2011 – 2013)

Economic analysis

 Milestone: Favorable technology feasibility study

Sorbent development

 Milestone: Successful scale-up of fluidized-bed sorbent

Process development

 Milestone: Working multi-physics, CFD model of FMBR

 Milestone: Fabrication-ready design and schedule for

single-stage contactor

Pilot

0.5 - 5 MW (eq)
Demo

~ 50 MW

Commercial

Previous Work Current Project Future Development

< 2011 2011-15 2016-18 2018-22 > 2022

Relevant Environment Validation (2013 – 2014)

Process development

 Milestone: Fully operational bench-scale FMBR unit capable of absorption / desorption operation

 Milestone: Fabrication-ready design and schedule for high-fidelity, bench-scale FMBR prototype

Sorbent development

 Milestone: Successful scale-up of sorbent material with confirmation of maintained properties and performance

8
9
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Preliminary Technology Feasibility Study
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9.9
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Breakdown of the Main Contributors to the Cost of CO2 Captured, 

$/T-CO2

Capital Cost

Steam

Electricity

 Variable 

  Operating 
 Fixed Operating

CO2 TS&M Cost

Total CO2 Capture Cost - 39.7 $/T-CO2

(37.3%)

(25.1%)

(10.2%)

(13.5%)

(13.7%)

Summary
• Total cost of CO2 captured ~ 39.7 $/T-CO2

• > 25% reduction in cost of CO2 capture,

with > 40% reduction possible with

advances in sorbent stability and reactor

design

• ~ 40% reduction in energy penalty;

significant reduction in total capture plant

cost (compared to SOTA)

Cost Reduction Pathway

• Sorbent
• Improve CO2 capacity

• Improve long-term stability; minimize

losses

• Reduce production costs

• Process
• Heat recovery from absorber /

compression train and integration into

process

• Recycle attrited sorbent particles for

removal of acid gases

• Explore lower cost MOCs and

compatibility

TEA to be revised in 2015 using bench-scale 

test data and updated guidelines from NETL
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Current Status of Project
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• Test Equipment

• Sorbent Scale-up

• Bench-scale Prototype Testing

• Next Steps – Bench-scale Testing

• Next Steps – Sorbent Development

• Application to Other Industrial CO2 Sources
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Test Equipment – PBR and vFBR
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Packed-bed Reactor

“visual” Fluidized-

bed Reactor

• Fully-automated operation and data analysis;

multi-cycle absorption-regeneration

• Rapid sorbent screening experiments

• Measure dynamic CO2 loading & rate

• Test long-term effect of contaminants

• Verify (visually) the fluidizability of PEI-

supported CO2 capture sorbents

• Operate with realistic process conditions

• Measure P and temperature gradients

• Test optimal fluidization conditions
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2015 NETL CO2 Capture Technology Meeting

RTI’s Bench-scale Solid
Sorbent CO2 Capture
Prototype System

• Flue gas throughput: 300 and 900 SLPM

• Solids circulation rate: 75 to 450 kg/h

• Sorbent inventory: ~75 kg of sorbent

• Currently conducting prototype
testing to evaluate sorbent
performance and process design
effectiveness
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Development Progress – Sorbent Scale-up

Objective
Improve the thermal and performance stability and production cost of PEI-based

sorbents while transitioning fixed-bed MBS materials into a fluidizable form.

Previous Work

• Stability improvements through addition of

moisture and PEI / support modifications.

• Suitable low-cost, commercial supports

identified (1000x cost reduction).

• Converted sorbent to a fluidizable form.

Current Work

Gen1 Sorbent  (chosen for scale-up)

• PEI on a fluidizable, commercially-produced

silica support.

• Optimized Gen1 sorbent through:  solvent

selection;  drying procedure;  PEI loading %;

regeneration method;  support selection; etc.

Gen2 Sorbent  (promising next step)

• Extremely stable sorbent, high CO2 loadings (11

wt%).

• Provisional patent application filed.

Optimized PEI loading
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Bench-scale Prototype Testing

Prototype system has gone through full 

construction, shakedown, and commissioning
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FG 

Composition

CO2 H2O N2

15 vol% 3 vol% Balance

Highlights of prototype testing (to date)
• Cumulative testing: 350+ circulation hours; 100+

CO2 capture hours.

• The sorbent is capable of rapid removal of CO2 from

the simulated flue gas

• Sustained 90% capture of the CO2 in the simulated

flue gas stream is possible

Prototype system operation:

• Starting temperatures: 70˚C (Absorber); 110˚C

(Regen)

• Heat exchange: CW in Absorber; Steam in

Regenerator

• Pneumatic conveying of sorbent (Regen Absorber)

• Sorbent circulation rate controlled and monitored by

measurement of the riser pressure drop

5 hrs

7 hrs
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Bench-scale Prototype Testing
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Highlights of prototype testing (cont’d)

• Sorbent has very good hydrodynamic properties

• Absorber temperature rise linked to CO2 capture

• Immediately upon introduction of CO2 to Absorber, a

large exotherm is observed in the first stage and

required ~1.5 kWth heat to be removed; Exotherm

migrates up through the Absorber stages

• Heat Management Demonstration:

• Complicated by large heat losses to

environment

• Mitigated heat loss effects through continuous

heat delivery to Absorber / flue gas

• Able to demonstrate superior CO2 capture

performance with heat management

• 90% CO2 capture achieved with CW heat

management + heat loss to environment

• Additional parametric studies are needed to clearly

correlate process variables with system

performance and assumptions from economic

analyses.
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Other Lessons Learned
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• Sorbent circulation and fluidization
• Identified process conditions to pressure balance circulation loop

• Calibrated circulation rate using extraction probes / ΔP measure

• Optimized loop seal aeration approach to maximize solids circulation

• Eliminated static electricity build-up which was causing solids

agglomeration

• Added pneumatic vibrators to downcomers to improve circulation

reliability

• Added larger diameter downcomers for additional circulation reliability

• Mechanical
• Experienced cracking of polycarbonate viewing section due to thermal

expansion differences– replaced with a SS pipe section

• Identified need for cyclone maintenance to eliminate sorbent back-up

potential

• Modified gas entrance arrangement to primary cyclone and added

secondary cyclone to improve sorbent recovery

• Replaced rotameters with more reliable / less burdensome MFCs

• Performance
• Minimal PEI leaching or vapor-phase degradation observed

• Observed heat loss to the environment – requiring additional heat

tracing

• Observed oxidative degradation of sorbent which is being eliminated

through modification of bench-scale riser section

Concept

Lab

Pilot

Demo
Bench-scale testing

Mechanical failure of PC viewport

Fouling of bench system filters
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Next Steps – Parametric Testing

Process Variable Range Evaluated Notes

Focus Areas Studied

Temperature profiles
65 to 95 °C (Absorber)

100 to 130 °C (Regen.)

• Regeneration performance improved at higher temperatures (> 120C)

• Additional work will attempt to evaluate performance impact while maintaining

Absorber stages at different temperatures.

Sorbent circulation rate 50 to 350 lbs/hr 
• Additional work will focus on optimizing performance based on S/G ratios and

will evaluate if higher circulation has impact on attrition.

Absorber temperature 65 to 95 °C
• CO2 capture clearly improves with heat removal in Absorber.

• Additional work to be performed while heat loss to environment is minimized

Focus Areas to be Studied

% CO2 Capture 10 to 99% capture
• Work will focus on improving S/G ratio, maximizing sorbent capacity,

maximizing heat removal, and improving regenerator performance.

Sorbent stability
Stability indicators; 

3 to 5 wt% loading

• PEI sorbent fluidizable under relevant process conditions.

• Attrition to be quantified in parametric and long-term tests.

Sorbent bed height Total bed height is 156” • Work will correlate bed height with pressure drop in Absorber.

Flue gas velocity 0.4 to 0.65 ft/s
• There will be an optimization point which maximizes FG velocity > 1 ft/s, but

does not entrain a significant amount of solids.

Pressure drop 3 to 4 psia • Work will focus on minimizing pressure drop.

Heat transfer coefficient Calc. 500-800 W/m2K • Work will continue to evaluate HX coefficient at different conditions.

15

Parametric testing to be focused on key economic performance variables and assumptions
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Next Steps – Long-term Testing

• Parametric tests

• System modification: Regenerator

• McCabe-Thiele method used to estimate optimal

number of vessel stages needed for ideal CO2

capture performance

• Staging accomplished through separate vessels or

effective staging using internals in a single column

• Staged design is analogous to trayed columns used

extensively in gas-liquid absorption/desorption

processes.

• Current regenerator configuration (single-stage) is

not optimal for achieving very high sorbent working

capacities.

• Current regenerator will be replaced with staged

column mimicking design of the absorber column.

• 500 hrs long-term testing goal

• Conduct testing under optimal process conditions.
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Next Steps – Sorbent Development
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Supported PEI Sorbent Improvement (“Gen1”)

• Fresh sorbent scale-up batch
• 130 kg batch incorporated lab-scale improvements

• ~ 20% increase in CO2 loading capacity (preliminary 
data)

• Identifying additional optimization approaches
• Preparation/manufacturing variables

• Support modifiers

• Blended amines

• Working with commercial manufacturers on silica

support modifications/tailoring and to streamline

production process

Water-stable Sorbents (Potential “Gen2” materials)

• Two key benefits
• Stability in presence of liquid water

• Very high CO2 loading capacities (> 11 wt%)

• Other applications (e.g. water treatment)

• These materials have other applications (potentially in water treatment applications)

• Development efforts for these water-stable sorbents are focused on key challenges:

• Increase density and physical strength

• Convert to fluidizable form
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Application to Other Industrial CO2 Sources

Objective
Demonstrate the technical and economic feasibility of RTI’s advanced, 
solid sorbent CO2 capture process in an operating cement plant


Period of Performance:

• 5/1/2013 to 10/31/2016

▼ Location:
• Cement plant in Brevik, Norway

Project is structured in two phases:

Phase I - Complete
• Evaluate sorbent performance using simulated and actual

cement plant flue gas (testing in Norway)
• Prove economic viability of RTI’s technology through

detailed economic analyses
• Develop commercial design for cement application

Phase II
• Design, build, and test a pilot-scale system of RTI’s

technology at Norcem’s Brevik cement plant
• Demonstrate long-term stability and effective CO2 capture

performance
• Update economic analyses with pilot test data RTI’s Lab-scale Test Unit in Norway
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