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Key ldea:

Combine:
(1) state-of-the-art supported amine
adsorbents, with

(1) a new contactor tuned to
address specific weaknesses of
amine materials,

to yield a novel process strategy
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Silica-Supported Amine Sorbents

Amine sorbents widely studied in academia - but little work
on scalable contactors
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Supported amine sorbents require efficient heat management, -AHg = 65-85 kJ/mol.




Hollow fiber sorbents: a mass producible structured sorbent inspired by
hollow fiber membrane spinning
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Hollow fiber sorbents: a mass producible structured sorbent inspired by
hollow fiber membrane spinning
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Rapid temperature swing adsorption (RTSA)
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Rapid temperature swing adsorption (RTSA)
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Rapid temperature swing adsorption (RTSA)
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Rapid temperature swing adsorption (RTSA)

CO, Purity & Temp of fiber at time = 32s

100 130
N 1120
80+ sorption
1110
X )
P {100
5 — CO, — Temp_fiber ||qq &,
Q. — o
- 40 _ —
S 180 @
= im
80— o5 10 15 20 25 30

Axial dimension, m



Rapid temperature swing adsorption (RTSA)

CO; Purity & Temp of fiber at time = 52s
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Rapid temperature swing adsorption (RTSA)

CO, Purity & Temp of fiber at time = 63s,,
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Rapid temperature swing adsorption (RTSA)
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Rapid temperature swing adsorption (RTSA)

CO, Purity & Temp of fiber at time = 1285,
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Rapid temperature swing adsorption (RTSA)

CO; Purity & Temp of fiber at time = 1535130
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Rapid temperature swing adsorption (RTSA)

CO; Purity & Temp of fiber at time = 1785,
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Creating the hollow fiber sorbents: Post-spinning amine infusion

New method for amine-containing fiber sorbent synthesis
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» First successful spinning of polymer/silica/PEI hollow fiber sorbent
« Simple, scalable procedure—does not appreciably change current solvent
exchange procedure
* Proved the concept with cellulose acetate (CA) - CA/silica/PEl
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Hollow Fiber Contactor as Heat Exchanger

Constructing a barrier lumen layer in the fiber bore allows the
fibers to act as an adsorbing shell-in-tube heat exchanger.

Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through

fibers
- Disadvantage — fibers can become clogged by latex, requires careful

handling of latex

(i) Dual layer fiber spinning — spin the lumen layer when initial fiber formed

- Advantage — highly scalable synthesis when poly(amide-imide)
like Torlon® employed

- Main fiber: porous Torlon® containing 50-60 wt% silica;
Lumen layer: dense Torlon®; post-treatment with PDMS gives excellent

barrier properties

Torlon / _/ '} .
ﬁ u/ \_{/ "o
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Labreche et al., J Appl Polym. Sci., 2015, 132, 4185.



Hollow Fiber Contactor as Heat Exchanger

Sorbent sites, supported by
porous fiber wall

Constructing a barrier lumen layer in the fiber bore allows the
fibers to act as an adsorbing shell-in-tube heat exchanger.

Two approaches: R .

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through

fibers
- Disadvantage — fibers can become clogged by latex, requires careful

handling of latex
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Lab-scale RTSA design and operation
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Cooled Torlon-C803-PEI Fiber Sorbent Generation 3 Fibers
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Impact of SO,/NO, on Fiber Module Operation

normalized q,
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NO,, SO, adsorb strongly, but have modest impact at low concentration
Saturation capacity loss observed

High concentration of gases (200 ppm) cause significant capacity loss, but a
plateau was observed. Low concentration NO, had no measurable impact on
capacity for class 1 fibers.

Deactivated fibers can be stripped of amine and recharged in the field for full
capacity regeneration.
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Overall approach Trimeric Corp.

DOE Metric Calculation. Feedback to
single fiber deS|gn and optimization
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Performance Evolution during Project and Future Directions

Descrintion Units Year 2 Q4 Year 3 Year 3
> (Sept 2013)  (July 2014) __ (Jan 2015)
RVTSA -
RTSA RTSA
0.2 bar
Escalation Factor 1.67 1.53 1.40
Levelized Costs of Electricity and Steam
Levelized cost of electricity mills/kWh 178 154 126
Levelized cost of steam $/1,000 Ib 16.2 14.0 11.5
Cost of CO, Capture
Total Annual Cost of CO, Capture MM$/year 277 302 237
Impact of CO, Capture on Plant Efficiency
Net Plant Efficiency without CO, Capture (HHV) % 39.3 39.3 39.3
Net Plant Efficiency with CO, Capture (HHV) % 22.0 25.6 28.8
Change in Net Plant Efficiency % -17.3 -13.7 -10.5
Future directions:
RVTSA RVTSA RVTSA RVTSA
Process .
configuration adsorption CA polymer and 1 New polymer and 4 New polymer and
heat recovery um silica sorbent um silica sorbent 500 nm silica
Swing capacity 0.48 0.65 0.76 0.93
[mmol/gfiber]
Number of modules 2002 1278 1096 894
Annual cost of CO,
capture [MM$/year] 182 201 181 159
CO.recovery [%)] 75 90 90 90
CO,purity [%] 95 96 96 95

‘ Escalation factor 1.35 1.35 1.33 1.31




Summary, Major Advances, and Remaining Challenges

Rapid Temperature Swing Adsorption (RTSA) enabled by a new contactor
combined with solid amine sorbents.
« Cycle allows quasi-isothermal adsorption with significant latent heat
recovery due to nanoscopic shell-tube heat exchanger design.
We are developing a fundamentally new contactor with modern sorbents — significant
advances in first three years.
Technoeconomic analysis suggests targets for improvement.
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Summary, Major Advances, and Remaining Challenges

* Invention of post-spinning amine infusion method of creating and recharging sorbents

« Development of dual layer spinning method for scalable lumen layer formation

« Up to 70% recovery of the heat of adsorption via heat integration

« Detailed single fiber model validated with experiments

* Reduction of RTSA cycle times to 3 minutes

« Development of multi-scale model spanning the nanoscale to the plant scale, with
rapid data transfer across scales
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and Remaining Challenges

Large scale, low cost process control (for practical operation, not for lab scale)
Understanding dynamics by long term operation of complete cycles with bore-side
heating/cooling
-- conducted >100 consecutive cycles with external heating/cooling
-- conducted <10 consecutive cycles with bore-side heating/cooling
Complexities associated with water (humidity)
-- model results based on dry feeds
-- experimental tests with humidity conducted, humidity helps capacity and kinetics
Incremental increases in breakthrough capacity
Manufacturing cost estimates of fibers have significant uncertainty
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