Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO₂ Capture Process for Coal-Fired Power Plants (DE-FE0013865)

Jak Tanthana, Mustapaha Soukri, Paul Mobley, Aravind Rabindran, Justin Farmer, Markus Lesemann, and <u>Marty Lail</u>

Satish Tamhankar, Stevan Jovanovic, and Krish Krishnamurthy

Andreas Grimstvedt, Solrun Johanne Vevelstad

() SINTEF

June 24, 2015 www.rti.org

RTI International is a trade name of Research Triangle Institute.

Technology Development with RTI

Non-Aqueous Solvent (NAS) Development Pathway

	Previous Work		DOE ARPA-E Project	DOE NETL Project (Current)	Future Development		
Yr	2009-10		2010-13	2014-15	2016-20 202		
TRL	1 2	3	4	5	6 7	8&9	
Proof of Concept/Feasibility Pre-Comme Demonstration							
 Lab-scale Development (Previous) Solvent screening to identify promising solvent formulations Lab-scale evaluation of NAS Process Preliminary technical and economic assessments 							
Large Bench-scale System / Relevant Environment Testing (Current) •Finalize NAS formulation •Address evaporative losses and solvent costs •Develop critical process components •NAS wash / recovery section •NAS response to the section							
 •NAS regenerator •Bench-scale testing with in a process unit with major process components •Demonstrate ≤ 2,100 kJt/kg CO₂ using bench-scale system •Detailed solvent degradation and preliminary emissions studies •Detailed Techno-Economic & EH&S Assessments •Demonstrate T&EA competiveness and environmental permitability 							

R&D Strategic Approach

Breakdown of the Thermal Regeneration Energy Load

$q_{R} = \begin{bmatrix} C_{P}(\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$rac{\mathbf{T_R}-\mathbf{T_F})}{\Delta \alpha}$. Sensible	-	$\left[\frac{1}{sol}\right] + \left[\Delta H\right]$	I _{v,H2} o · <mark>P_{H2}o</mark> Pco; Heat o Vaporizat	f	+ $\left[\frac{\Delta H_{abs,CO_2}}{M_{CO_2}}\right]$ Heat of Absorption
Solvent	C _p [J/g K]	∆h _{abs} [kJ/m ol]	∆h _{vap} [kJ/m ol]	X _{solv} [mol solv./ mol sol'n]	∆α [mol CO₂/ mol solv.]	Reboiler Duty [GJ/tonne CO ₂]
MEA (30%)	3.8	85	40	0.11	0.34	3.22
Lower Energy Solvent System	ŧ	₽	ŧ	t	1	ŧ
NAS	1.2	65	0	0.38	0.45	2.36

For NAS, heat of vaporization of water becomes a negligible term to the heat duty Process capable of achieving these criteria will have a lower energy penalty than SOTA processes

Path to Reducing ICOE and Cost of CO_2 Avoided

- Primarily focus on reducing energy consumption – reboiler duty
- Reduce capital expenditure

 Simplify process arrangement

- Materials of construction
- Limit operating cost increase

Rochelle, G. T. Amine Scrubbing for CO₂ Capture. *Science* **2009**, 325, 1652-1654.

Objectives and Challenges for Current Project

Objective: Continue the advancement of the NAS CO₂ Capture Process

- Address specific challenges facing technical and economic potential
- Bench-scale demonstration of the potential to reduce the energy penalty to <2,100 kJt/kg of CO2 captured

Specific Challenges

- Minimize solvent losses and makeup
- Solvent degradation and emission studies
- Develop and evaluate process modifications
- Bench-scale evaluation of the NAS CO₂ capture process

Timeframe: 10/1/13 to 03/30/15 (BP1, 18 months) 04/1/15 to 03/31/16 (BP2, 12 months) **Cost:** \$1.51 M BP1, \$1.55 M BP2

RTI NAS Solvent

Progressed Solvent Refinements to VLE- ΔH_r Measurement

First screened by measuring :

- CO₂ breakthrough curves
- Viscosity
- Water content
- 5-10 mL scale

Promising refinements measured in automated VLE and reaction calorimetry:

- Operating range to 150° C
- Reproducibility
- Minimize experiment time (as much as possible)
- 50-100 mL solvent scale

VLE- Δ H_r Validation with 30 wt% MEA-Water

• System and methods capable of generating high-quality data comparable to the highestquality data reported in academic literature

Lab-Scale Testing of Refined Solvents

Operating Conditions

- 0.5 liter solvent volume, ~2.5 SLPM gas flow rate
- Simulated flue gas containing 13.3% CO₂, 7.5% H₂O, 2% O₂, 50 ppm SO₂, and balance N₂
- Commissioning runs with 30 wt% MEA-water
- Evaluated 'best-candidate' NAS formulations
- Provides engineering team with a training tool to understand start-up and shut-down, system dynamics for larger, bench-scale unit and can be a useful troubleshooting tool

RTI International

Energy Technology Division

Solvent Refinement to Reduce Make-up costs and Emissions

BP1 Key Challenges

- NAS costs (\$/kg) 10- to 100-X that of simple aqueous-amine components
- NAS-1 components have evaporative losses ~ 10X that of 30 wt% MEA-water
- Main volatile component is a diluent with vapor pressure of 1.85 kPa at 40°C

Key Characteristics of NAS

- Large working capacity at low regeneration temperatures
- Low specific heat capacity
- Reasonable viscosity

Simple Solution: Replace volatile diluent with a non volatile diluent

RTI International

Incorporation of a Non-Volatile Hydrophobic Diluent (NAS-2, NAS-3)

Identified hydrophobic diluent with suitable properties :

- Vapor pressure <0.13 kPa, 25° C
 Low viscosity
- Low cost

Vapor Liquid Equilibria NAS-3

Formulated diluent with hydrophobic amines

- Low heats of absorption
- No precipitates
- 11 Low viscosities

- High CO₂ capacity
- Cost is <\$50/kg

Patent Applications 13/820,027 and 14/382,108

α

2500

Assessment of Emissions Using Absorber Wash Section

300

- Ran experiments to demonstrate wash section
- Top experiment performed on NAS-2
- Bottom experiment performed on NAS-3
- Observed higher emissions for NAS-2
- Doubled the length of the wash section
- Observed emissions of NAS-3 solvent lower and well below 10 ppm (target criteria)

sh section outle 250 2000 (mdd) seo 150 1500 Pinb 143 ppm 1000 ହିଁ ₁₀₀ Ŕ 500 50 0 2 3 10 4 Time (h) NAS-3 • € ⁴⁰ mqq) seg . 20 Ğ 20 20 ppr

Time (h)

NAS-2

Through appropriate solvent formulation and design of the wash section emissions

Long Term Lab-Scale Evaluation (NAS-2)

- Rich-split section overhead condenser integrated into design
- CO₂ balance
- Capture efficiency (~90%)
- Long-term, stable operation demonstrated (~100 hrs)
- Achieved water balance without issue

Impact of Water (NAS-2, NAS-3)

Properties of NAS Solvent

Criteria	Target	NAS-2
Vapor Pressure [kPa] @ 40°C	< 1	0.3 (Estimated)
Water Content [wt%]	<10	9.26
Viscosity [cP] CO ₂ -rich at 40°C	< 40	< 30
Foaming Tendency	Low	Low
Cost [\$/kg]	< 50	< 50
Health Rating	≤ 3 (≤MEA)	2
Min. thermal regeneration energy* [kJt/kg CO ₂]	<2,100	2,000

*Notz et al. A short-cut method for assessing absorbents for post-combustion carbon dioxide capture. *Int. J. Greenhouse Gas Control* **2011**, 5, 3 413-421

- Heat of absorption of dry NAS vs. "wet" NAS
- Observed increase in heat of absorption when NAS was fully saturated with water
- Impact on the process is that water may need to be kept ≤ 5wt%
- Improving the hydrophobicity of the solvent chemistry would be another way to handle this issue

Results

Stainless steel cell (27 mL)

Thermal Degradation Studies

- Five-week thermal degradation studies
- Study conducted at 110° C on sealed, CO₂ loaded sample (15 ml)
 - Studied three NAS components and three NAS formulations
- 100% MEA also tested

- · Single components of diluent are thermally stable
- NAS-2 and NAS-3 amines are thermally stable
- All changes are within sampling and analysis uncertainties
- Typical carbamate polymerization products are not formed
- Oxazolidinone formation not observed
- Corrosion results promising (Fe, Ni, Cr)

RTI International

Oxidative Degradation Testing

Accelerated degradation conditions

- Open batch reactor
- Gas Composition = air + 2vol% CO₂
- Temp = 55° C

nrs	23 hrs	94 hrs	

- NAS-2 amine oxidative degradation high
- Will require an oxidation inhibitor
- Hydrophobic diluent stable
- NAS-3 amine oxidative degradation low
- NAS-3 formulation: main component does not show oxidative degradation

Summary of BP1 Scale-Up and Next Steps

- Refined several NAS solvent formulations to maintain promising thermodynamic and physical properties discovered in previous ARPA-E project (viscosity, heat of absorption, working capacity)
- Replaced volatile formulation components with diluents with low vapor pressure (<0.3 kPa at 40° C)
- Conducted long-term, continuous, lab-scale testing on simulated flue gas to validate performance characteristics and avoid process surprises
- Performed thermal and oxidative degradation studies and found one amine component to be sensitive to oxidative degradation under accelerated conditions
- Determined experimental properties for ASPEN equilibrium thermodynamic ENRTL-SR model (not discussed)
- With Linde, currently evaluating NAS performance in bench-scale test unit, bench-marking against 30wt% aqueous monoethanolamine
- Ongoing long-term degradation testing at SINTEF using solvent degradation rig

State-Point Data Table for NAS-3

	Units	Measured Performance	Projected Performance
Pure Solvent	Units	Measureu Fertormance	Frojecteu Fertormance
Molecular Weight	g mol ⁻¹	139.17ª 153.6 ^b	< 250
Normal Boiling Point	°C	243 to 288.45	181 to 200
Normal Freezing Point	°C	52.5 to -24	52.5 to -24
Vapor Pressure @ 15°C	Bar	0.00001 to 0.003°	< 0.005 ^b
Working Solution			
Concentration	kg/kg	0.316 ^d	0.4 to 0.6
Specific Gravity (15°C)	kg/L	1.066 to 1.1°	0.9 to 1.2
Specific Heat Capacity @ STP	kJ/kg K	1.28 to 1.48 ^d	1.2 to 1.5
Viscosity @ STP	cP	26.2 ^d	< 40
Surface Tension @ STP	dyn/cm	36.6 to 38.7°	< 40
Absorption			
Pressure	bar CO ₂	0.133	0.133
Temperature	°C	35 to 45 (40)	35 to 45
Equilibrium Loading	g molCO ₂ /kg	0.85 to 1.59 ^c (1.06)	0.85 to 1.59
Heat of Absorption	kJ/kg CO ₂	1,590 to 1,931 ^d	1,590 to 1,931
Solution Viscosity	cP	26.2	2 to 30
Desorption			
Pressure	bar CO ₂	2 to 7.8 (2.0)	2 to 7.8
Temperature	°C	90 to120 (90)	90 to 120
Equilibrium Loading	g molCO ₂ /kg	0.02 to 0.4 ^c (0.2)	0.02 to 0.4
Heat of Desorption	kJ/kg CO ₂	1,250 to 1,591° (1,591)	1,250 to 1,591

^a Nitrogenous Base Component

^b NAS Formulation

^c Individual components, range lowest to highest ^d Ranges based on exp. measurements for most promising NASs Italicized numbers used in preliminary technical and economic assessment.

Updated VLE Curves from ENRTL-SR

Lab-Scale Gas Absorption System

Description

- Simple gas scrubbing system suitable for evaluation of aq. and non-aq. solvents
- 2-10 SLPM of sim. flue gas with relevant blends of CO₂, H₂O, O₂, SO₂, N₂
- Liquid flowrates of 10 to 130 mL/min
- Operates continuously; > 50 days (1,000h) commissioning with MEA-Water
- Total solvent volume: ~400 mL
- Off-line solvent compositional analysis
- On-line gas analysis

Scope of Testing

- Demonstrate stability of non-aq. solvents in a representative process arrangement using high-fidelity sim. FG
- Evaluate/demonstrate key process concepts specific to non-aqueous solvent process
- Compare performance of the NAS process and 30 wt% MEA-H₂O
 - Estimate regen. energy [kJ_t/kg CO₂]
 - Support design of large, bench-scale unit

