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New fabrication techniques can enable new materials
and processes to achieve low-cost carbon capture.
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FEWO0194: Advanced Manufacturing To Enable Enhanced
Processes And New Solvents For Carbon Capture

$4.15M over 3 years (April 15, 2015 — April 14, 2018)

Encapsulation of Advanced Process design and scaleup with
Solvents microcapsules

$475k/yr $475k/yr

Tasks

Rapid determination of

_ _ solvent properties via
CO, absorber design with microfluidic reactors

advanced manufacturing $133k/yr
$250k/yr




Objective: enable solvent-based transformational carbon capture
using advanced manufacturing techniques.

Demonstrate encapsulation of Identify and refine a suitable
new solvents with desirable process configuration for
properties for transformational Microencapsulated CO, sorbents
carbon capture. (MECS).

Determine properties of

Identify improvements to candidate solvents via
absorbers enabled by microfluidic techniques.

advanced manufacturing.

Task Objectives
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Advanced solvents have some common advantages:

* Lower energy of regeneration
* Low volatility
« Tunability for innovative processes

...and common problems:
e High viscosity

Water intolerance

Phase changes

Slow heat transfer or mass transfer
High solvent cost



Some solvents with potential for 30—50% energy
savings and specific challenges:

1. Sodium carbonate solution: slow CO, @
absorption, precipitates solids. Baking Soda
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—How can advanced manufacturing help?



Advanced Manufacturing:

a suite of fabrication techniques characterized by:

 additively assembled parts

e MICro- or nano-scale control over structures
(micro-architecture)

e micro- or nano-scale assembly of multiple
components

e computational or analytical design directly input
to the fabrication technique



Some additive manufacturing techniques under
development at LLNL

Projection Microstereolithography (PuSL) Direct Ink Writing (DIW)
A photochemical and optical technique Utilizes unique flow and
T ) gelling properties
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Some additive manufacturing techniques under
development at LLNL

Projection Microstereolithography (PuSL) Direct Ink Writing (DIW)

A photochemical and optical technique Utilizes flow and
gelling properties

Electrophoretic Deposition (EPD)
Electric fields transport nanoparticles




Microencapsulation: double emulsions are produced in a

microfluidic device...
» Control of capsule

diameter and shell
thickness.

Outer Fluid,_ gssges > Middle Fluid
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e Encapsulates ~100% | L.§... ; == mner Fuig
of inner fluid

e Core fluid can also

have solids

 Production rate: 1-
100 Hz

...and then cured with UV
light.



Micro-encapsulated Carbon Sorbents (MECS):

Liquid solvents or slurries encased in thin, permeable polymer
shells

« Multiple solvents,
shell materials, and
sizes produced
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Microencapsulation enhances kinetics.

Absorption Desorption
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Microencapsulation enhances kinetics.

CO, absorbs through “*«ggmm
shell

Surface area formed by
capsule, not a tower
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Time: 020min ;
Carbon dioxide atmosphere

Microencap SUlation with 60% relative humidity
enables mixed phases
and viscous solvents.

30 wt% Na,CO, capsules exposed
to CO, precipitating Nacholite—

Encapsulating slurry of glass Microceplsifoemccst A 4
d 30 Migasodium carbonate ¢
bubbles! - . ~
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Time: 480ming# ¥ . o
e Zash A Carbon dioxide atmosphere

e with 60% relative humidity

Microencapsulation |
enables mixed phases -
and viscous solvents. e
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Encapsulation increases capture rate of carbonates by
10x compared to same volume of liquid.
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Process options same as for
solids:

e Fluidized bed
 Moving Bed
* Fixed bed

Thermally regenerable for
many cycles (80 tested).




Challenges and planned work



Challenge: Capsule Production Scale-up

« Bulk emulsion methods exist, but yield a
distribution of capsule properties.

« Two microfluidic production methods being
pursued.

Etched glass chips Tandem-Step chips
/ from Dolomite developed at Harvard

O~ Microfluidics

|| p—

&

4

A
Y=
I -

e —




Some success with
Ist-generation
multichannel chips
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Two 4-channel chips producing capsules Iin
parallel.



Scale-up alternative:
Tandem Step Emulsification
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Tandem Step Emulsification (Oil in Water)







Challenge: capsule curing in the presence of amines

Current shell material: Semicosil 949UV, Wacker Chemie AG
- Propriety silicone rubber blend (likely polydimethyl siloxane; PDMS)
- UV curable (likely UV-activated cross-linking through hydrosilation chemistry)

H
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Challenge: determine solvent properties from small

sample volumes.

Microfluidic characterization of CO, absorption solvents
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* Image analysis of gas bubble size vs
channel distance provides uptake data

« Different solvents show different
capture performance
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Raman spectroscopy characterization of amino acid
solvent CO, capture

 Raman spectroscopy
can identify
carbamate,
bicarbonate, and
carbonate species
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Improving absorber packings

Challenge:
overcoming the film thickness
or
disrupting the boundary layer

1 mm



Core-shell Direct Ink Write

Printed tubes
filled with
carbonate
solvent




/ Permeable packing material
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functionalized with CO, catalysts

—better surface area-to-volume and faster
reaction 1n absorbers
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CHANGING WHAT'S POSSIBLE
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