Advanced Manufacturing To Enable New Solvents and Processes For Carbon Capture

June 25, 2015
NETL CO₂ Capture Technology Meeting
Joshuah K. Stolaroff
New fabrication techniques can enable new materials and processes to achieve low-cost carbon capture.

- Precipitating carbonates
- Ionic Liquids (Ils)
- CO₂-binding organic liquids (CO₂BOLs)
- Nanoparticle Organic Hybrid materials (NOHMs)
- Micro-encapsulation
- Additive Manufacturing
- New Materials
- Process Design

Advanced Manufacturing

Process Innovations

Transformational Carbon Capture
FEW0194: Advanced Manufacturing To Enable Enhanced Processes And New Solvents For Carbon Capture
$4.15M over 3 years (April 15, 2015 – April 14, 2018)

Encapsulation of Advanced Solvents $475k/yr

Process design and scaleup with microcapsules $475k/yr

CO₂ absorber design with advanced manufacturing $250k/yr

Rapid determination of solvent properties via microfluidic reactors $133k/yr
Objective: enable solvent-based transformational carbon capture using advanced manufacturing techniques.

- Demonstrate encapsulation of new solvents with desirable properties for transformational carbon capture.
- Identify improvements to absorbers enabled by advanced manufacturing.
- Identify and refine a suitable process configuration for Microencapsulated CO$_2$ sorbents (MECS).
- Determine properties of candidate solvents via microfluidic techniques.
Project Team

Collaborators

David Heldebrant

Alissa Park

Joan Brennecke
Advanced solvents have some common advantages:

- Lower energy of regeneration
- Low volatility
- Tunability for innovative processes

...and common problems:

- High viscosity
- Water intolerance
- Phase changes
- Slow heat transfer or mass transfer
- High solvent cost
Some solvents with potential for 30—50% energy savings and specific challenges:

1. **Sodium carbonate** solution: slow CO$_2$ absorption, precipitates solids.

2. **Ionic Liquids**: water intolerance, precipitate solids (PCIL’s).

3. **NOHM**s: high viscosity, slow CO$_2$ absorption.

4. **CO$_2$BOLs**: poor heat transfer rates (high viscosity).
→How can advanced manufacturing help?
Advanced Manufacturing:

a suite of fabrication techniques characterized by:

• additively assembled parts
• micro- or nano-scale control over structures (micro-architecture)
• micro- or nano-scale assembly of multiple components
• computational or analytical design directly input to the fabrication technique
Some additive manufacturing techniques under development at LLNL

Projection Microstereolithography (PµSL)
A photochemical and optical technique

Direct Ink Writing (DIW)
Utilizes unique flow and gelling properties

Electrophoretic Deposition (EPD)
Electric fields transport nanoparticles
Some additive manufacturing techniques under development at LLNL

Projection Microstereolithography (PµSL)
A photochemical and optical technique

Direct Ink Writing (DIW)
Utilizes flow and gelling properties

Electrophoretic Deposition (EPD)
Electric fields transport nanoparticles
Microencapsulation: double emulsions are produced in a microfluidic device...

- Control of capsule diameter and shell thickness.
- Encapsulates ~100% of inner fluid
- Core fluid can also have solids
- Production rate: 1-100 Hz

...and then cured with UV light.
Micro-encapsulated Carbon Sorbents (MECS):
Liquid solvents or slurries encased in thin, permeable polymer shells

- Multiple solvents, shell materials, and sizes produced
Microencapsulation enhances kinetics.

CO_2 absorbs through shell

Surface area formed by capsule, not a tower

Embedded catalyst further enhances kinetics

“Zn-Cyclen”
Microencapsulation enhances kinetics.

CO₂ absorbs through shell

Surface area formed by capsule, not a tower

Embedded catalyst further enhances kinetics

“Zn-Cyclen”
Microencapsulation enables mixed phases and viscous solvents.

30 wt% Na₂CO₃ capsules exposed to CO₂ precipitating Nacholite

Encapsulating slurry of glass bubbles
Microencapsulation enables mixed phases and viscous solvents.

30 wt% Na$_2$CO$_3$ capsules exposed to CO$_2$ precipitating Nacholite ➞

Encapsulating slurry of glass bubbles↓
Encapsulation increases capture rate of carbonates by 10x compared to same volume of liquid.
Process options same as for solids:
• Fluidized bed
• Moving Bed
• Fixed bed

Thermally regenerable for many cycles (80 tested).
Challenges and planned work
Challenge: Capsule Production Scale-up

- Bulk emulsion methods exist, but yield a distribution of capsule properties.
- Two microfluidic production methods being pursued.

Etched glass chips from Dolomite Microfluidics

Tandem-Step chips developed at Harvard
Some success with 1st-generation multichannel chips
Two 4-channel chips producing capsules in parallel.
Scale-up alternative: Tandem Step Emulsification
Tandem Step Emulsification (Oil in Water)
Challenge: capsule curing in the presence of amines

Current shell material: Semicosil 949UV, Wacker Chemie AG
- Proprietary silicone rubber blend (likely polydimethyl siloxane; PDMS)
- UV curable (likely UV-activated cross-linking through hydrosilation chemistry)

Hydrosilation:

\[R\text{-}CH=CH_2 + H\text{-}SiR_3 \xrightarrow{\text{Pt catalyst}} R\text{-}CH\text{-}CH\text{-}SiR_3 \]

Proposed alternatives

Thiol-ene Click Chemistry

\[R\text{-}CH=CH_2 + H\text{-}SR \xrightarrow{\text{UV light, irgacure}} R\text{-}CH\text{-}CH\text{-}SR \]

Acrylate Chemistry
Challenge: determine solvent properties from small sample volumes.

Microfluidic characterization of CO₂ absorption solvents

- Image analysis of gas bubble size vs channel distance provides uptake data
- Different solvents show different capture performance
Raman spectroscopy characterization of amino acid solvent CO$_2$ capture

- Raman spectroscopy can identify carbamate, bicarbonate, and carbonate species
- We see disappearance of reactants and formation of products

Potassium lysinate before and after CO$_2$ capture
Improving absorber packings

Challenge:
overcoming the film thickness
or
disrupting the boundary layer
Core-shell Direct Ink Write

Printed tubes filled with carbonate solvent
Permeable packing material

→ better surface area-to-volume and faster reaction in absorbers

functionalized with CO$_2$ catalysts
Acknowledgements

Lynn Brickett
Andy Aurelio
Questions