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Challenge: Accelerate Development/Scale Up

Traditional time to deploy new technology in the power industry

_______________________________________________________________________________________

D;?,Z?gzxreym Process Scale U
10-15 years 20-30 years

_______________________________________________________

Accelerated deployment timeline

Process Scale Up
15 years

100 MWe
500 MWe
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Quantify sources and
effects of uncertainty to
guide testing & reach
larger scales faster

Stabilize the cost
‘ during commercial
deployment

Industry
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Goals & Objectives of CCSI

 Develop new computational tools and models to enable industry to
more rapidly develop and deploy new advanced energy
technologies

— Base development on industry needs/constraints

« Demonstrate the capabilities of the CCSI Toolset on non-
proprietary case studies

— Examples of how new capabilities improve ability to develop
capture technology

 Deploy the CCSI Toolset to industry
— Initial licensees

ALSTO BN

Chevron
Innovative Clean Energy
l Nj Simulation Systems, Inc.
) ) ) Solutions Power Without Pollution ™
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CCSI Timeline

* Organizational Meetings: March 2010 - October 2010

e Technical work initiated: Feb. 1, 2011

 Preliminary Release of CCSI Toolset: September 2012
— Initial licenses signed

e CCSI Year 3 starts Feb. 1, 2013
— Began solvent modeling/demonstration component

e 2013 Toolset Release: October 31, 2013

— Multiple tools and models released and being used by
Industry

e 2014 Toolset Release: October 31, 2014

 Future
— Final IAB meeting: Sept. 23-24, 2015 (Reston, VA)
— Final major release October/November 2015
— Commercial licensing late 2015 or early 2016
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Advanced Computational Tools to Accelerate
Carbon Capture Technology Development

Lab & Pilot Scale

Experiments & Data

Physical Properties
Kinetics
Thermodynamics

Device Scale Models
Validated 3-D, CFD

Process Systems
Design, Optimization & Control
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CCSIl Toolset Workflow and Connections

Uncertainty

Uncertainty

Basic Data
Submodels

= Uncertainty
Optimized Quantification

Frocess
Dynamics and
Control

CFD Device
Models
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CCSI Toolset Workflow and Connections

Superstructure Optimization

Process Models
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Outline

Process Systems Engineering & Crosscutting Tools
— FOQUS

— Optimization under uncertainty

Solid Sorbents Models & Demonstration

— Process Systems Example

— Validated CFD Model Example

Solvent System Model Example & Validation

— MEA example

Supporting Pilot & Demonstration Scale Capture
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Process Systems Engineering & Crosscutting Tools

e FOQUS — Turbine — SimSinter
— Simulation-Based Optimization
« Simultaneous Heat Integration | _
— Quantification of Uncertainty (UQ) = m'
— Optimization under Uncertainty Ly e
— ALAMO e | e | =
» Automatic Learning of Algebraic Models for Optlmlzatlon

— D-RM Builder
* Dynamic Reduced Model Builder

— IREVEAL
 CFD to Surrogate Process Models

 Data Management Framework
— Provenance Tracking & Integration
« Oxycombustion System Optimization
— Cryogenic Systems
— Boiler Model
— Trust Region Methodology
« Advanced Process Control Framework
« Membrane module & system model
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U Analysis

Framework for Optimization, Quantification of Uncertainty and Sensitivity

ALAMO || Simulation Optimization iREVEAL o
Surrogate Based InteH?Z:ion uQ Under B?Jilﬁjl\gr Surrogate Data Management
Models | | Optimization 2 Uncertainty Models Framework

{
FOQUS
@

Framework for Optimization Quantification of Uncertainty and Sensitivity

Results

Samples
i |

Meta-flowsheet: Links simulations, parallel execution, heat integration

A A

[
SimSinter Config
GUI
W \ 4
Turbine SimSinter Simulation
Parallel simulation execution ~ |€=3| Standardized interface for Aspen
management system simulation software gPROMS
Desktop — Cloud — Cluster Steady state & dynamic Excel
D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings
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of the 8th Foundations of Computer Aided Process Design Conference — FOCAPD 2014. M. R. Eden, J. D. Siirola and G. P. Towler Elsevier.
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Optimization Under Uncertainty
using a Two-Stage Approach

Design Phase Operating Phase

Uncertain parameters are
characterized probabilistically

Uncertain parameters have
been realized

Optimize design variables while
taking into account uncertainty

Optimize operational variables
In response to realized design

of unknown parameters parameters
Bubbling  Design Variables: Uncertain Parameters: Operational Variables:
Fluidized ° A.bsorbgr/regenerator « Flue gas flowrate (load-following)  * Steam flowrate
Bed (BFB) jas comp y | . .
« Heat exchanger areas « Reaction kinetics * Recirculation gas split
System and tube diameters : fraction

. G() — some statistics, e.g. mean
min , M O - uncertain parameters
subject to CO, capture > 90% G(COE(BFB, X,0))
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Solid Sorbents Models & Demonstration

Process models

Basic data models O
3 — Bubbling Fluidized Bed Reactor Model

— SorbentFit (1St gen mOdel)

— SorbentFit extension for packed beds — Dynamic Reduced Order BFB Model

— 2nd generation sorbent model which — Moving Bed Reactor Model
accounts for diffusion and reaction — Multi-stage moving bed model
separately — Multi-stage Centrifugal Compressor

CFD models Model

— Attrition Model — Solids heat exchanger models

— 1 MW bubbling fluidized bed adsorber — Comprehensive, integrated steady
with quantified predictive confidence state solid sorbent process model

— High resolution filtered models for — Comprehensive, integrated dynamic
hydrodynamics and heat transfer solid sorbent process model with
considering horizontal tubes control

— Validation hierarchy

— Comprehensive 1 MW solid sorbent
validation case via CRADA

— Coal particle breakage model with
validation

...........
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.........

solid fraction
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Solid Sorbent: Process Systems Example

Lab & Pilot Scale

Experiments & Data

Physical Properties
Kinetics
Thermodynamics

Device Scale Models
Validated 3-D, CFD

Process Systems
Design, Optimization & Control
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Bubbling Fluidized Bed Process Model

1-D, two-phase, pressure-driven and non-isothermal
models developed in both ACM and gPROMS

---------- S * Flexible configurations
N RERRRRRRRRAINL — Dynamic or steady-state
R e 11| B — Adsorber or regenerator
frosoe  _ Under/overflow
saoute || — Integrated heat exchanger for
heating or cooling

T e e Supports complex reaction kinetics

Inlet Gas
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Carbon Capture System Configuration

lean

sorbent COrrich g5 | comprossion
' chain I

1 1

COa2-lean gas H2 f :_ __________ !

cold in

Surrogate models for
each reactor and
technology used

o (Nu 1) l i
i parallel trains | az d2 S
| | Y

@J

———————————— 4 A
¥ Y
cold out <—< i > warm dy hot out

cold in — in <— hot in

Fy A
' ] <— steam
flue gas —» D— _.@7 %
s tu & rich H3 Mhﬂi_ feed CO2
util in sorbent o2

* Discrete decisions: How many units? Parallel trains?
What technology used for each reactor?

e Continuous decisions: Unit geometries

« Operating conditions: Vessel temperature and pressure, flow rates,
compositions
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ALAMO: Model Development & Overfitting

o Step 1: Define a large set of potential basis functions

2(37) = fo + ,611171 + ﬁgffjg —+ 533{}1;172 + /(346:1:1 + 556$2 4

o Step 2: Model reduction

Z(x) =2+ 20+ 5e"

Error

Ideal Model

*True error
Empirical error

i Complexity
(Underfitting ! Overflttlng
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Superstructure Optimization

Mixed-integer nonlinear
programming model in GAMS

e Parameters
 Variables
e Equations
e Economic modules
Process modules
 Material balances
e Hydrodynamic/Energy
balances
 Reactor surrogate models
 Link between economic
modules and process modules
e Binary variable constraints
 Bounds for variables

coolln
solidLean
gasOﬂt =————
)
coolOut
A l
coldin )
Underflow
Technology
Other Trains
warmin
faln >
—_ flueOut
warmQut feedCO2F
utilQut solidRich

Optimal layout
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IP Steam Extraction LP Steam Extraction
Steam Cycle > ———>
1

I
Reheater 1 1
1 1
High 1 '“L":’" 1 Low
—————————— Pressure | --- --L-- ;::S;a:ree ---L—->f Pressure |- ---
Turbine IP Steam bi LP Steam |_Turbine \
HP Steam =
Condenser

I

1
|

1

1

: ————— Process Water Return
1

1

1
L___ {_F_efd_v_vafe_r____@( v /@( ¢ - - Makeup
Feed Water Water

Coal > Boiler High Temperature Low Temperature
Air 3 L, Feed Water Heater Feed Water Heater
Intermediate
Flue Gas Compressor Cooler

CO, Stream
Clean Gas ;
5 co, X . i To Storage
Vent Stream 1 1 1
= = = >\Water ! = — =3 \Water U= = => Water
Cooling .
Water - Compression System
_———l € — — — —Steam
Adsorber Q Q Regenerator
Water
: 1 —> Gas Stream
€= T I === > Water @ Heater
> S _ _ __s Water/Steam
SolidSorbent 4 Cooler Stream
_______ Steam e Solid Steam

Carbon Capture System
Objective Function: Maximize Net efficiency

Constraint: CO, removal ratio = 90%
Flowsheet evaluation (via process simulators)
Minimum utility target (via heat integration tool)

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate

Optimization & Heat Integration
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Optimization with Heat Integration

Objective Function: Maximize Net efficiency

Constraint: CO, removal ratio 2 90%
Flowsheet evaluation (via process simulators)
Minimum utility target (via heat integration tool)

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate

.W/O he.at Sequential Simultaneous
Integration
Net power efficiency (%) 31.0 32.7 35.7
Net power output (MW,) 479.7 505.4 552.4
Electricity consumption® (MW,) 67.0 67.0 80.4
IP steam withdrawn from power cycle (MW, 0 0 0
LP steam withdrawn from power cycle (MW,,) 336.3 304.5 138.3
Cooling water consumption® (MW,,) 886.8 429.3 445 1
Heat addition to feed water (MW, 0 125.3 164.9

Base case w/o CCS: 650 MW, 42.1 %

Chen, Y., J. C. Eslick, I. E. Grossmann and D. C. Miller (2015). "Simultaneous Process Optimization and Heat Integration Based on Rigorous Process
Simulations." Computers & Chemical Engineering. doi:10.1016/j.compchemeng.2015.04.033
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Uncertainty Quantification for Prediction Confidence

= Now that we have
« A chemical kinetics model with quantified uncertainty
» A process model with other sources of uncertainty
e Surrogates with approximation errors
» An optimized process based on the above

* UQ questions

 How do these errors and uncertainties affect our prediction
confidence (e.g. operating cost) for the optimized process?

e Can the optimized system maintain >= 90% CO2 capture in the
presence of these uncertainties?

* Which sources of uncertainty have the most impact on our prediction
uncertainty?

* What additional experiments need to be performed to give acceptable
uncertainty bounds?

CCSI UQ framework is designhed to answer these questions
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Perform statistical analyses with FOQUS

Ensemble Analyses

» Uncertainty analysis £22 7 _Po°
i > Sensitivity analysis e
(1 > Correlation analysis T-
o8 Ensemble UA > Scatterplots for visualization RS-hasediss
ITﬁ—f T £0 £

= . Response Surface (RS) Analyses

a = e > RS validation
gm RSbased UA » RS visualization

» RS-based uncertainty analysis
» RS-based sensitivity analysis

S » RS-based Bayesian inference
Actual vs. Prodictod Data SurfaceiContear Moty of *Cosk_coe_obj = NARSILG, d53, LG _dHOy" 200 + E@v
| TR

rrrrrrr

- RS
validation

TR 0 oW % W B ° B0 i w0 W 80

et P - RS V|suaI|zat|oF‘i‘°ua
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Solid Sorbents: Validated CFD Model Example

Lab & Pilot Scale

Experiments & Data

Physical Properties
Kinetics
Thermodynamics

Device Scale Models
Validated 3-D, CFD

Process Systems
Design, Optimization & Control
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Building Predictive Confidence for Device-scale CO,
Capture with Multiphase CFD Models

Clean Gas

to Stack CO2 to Sequestration
SHX-01
ADS-001
Brod_Cin Sol_Fsh | HY_Hot
r "
R ERRRERL] [p— sol_Heat
— r
cve-001 b= \
[
cYC-002
i)
ST_HK
Elf-0p1 Sol_RGN
E p2
BT S0l Load ] c
SHX-02
Feed_ADS
ST_Tot E 2
GHX-001 LP Steam

c2u
Batch
Unit

Carbon Capture Simulation Initiative
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CCSI CFD Validation Hiera

25 MWe, 100 MWe,
650 MWe
Solid Sorbent

i 3\
! 1MWeCarbon ;i
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Demonstration and
Full Scale Systems

Pilot Scale
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___ S
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i Intermediate Validation 1 | Intermediate Validation 1
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?\ heat transter] ': ’ ! and heat transter) ': (Decoupled
'_\"""I___________: 4 ‘"_"""__T_______d benchmark cases)
~ -
S < - -]~
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Intermediate Validation with Unit Problem 3
Predicted Breakthrough Curves for Held-out Runs

Run 2
< — *  Experimental Data
~. Decomp Bands
\ \ = Emulator Mean
Y "-‘ - - Emulator Bands
Vi \ = Emu + Dis Mean
M Vil \ - = Emu + Dis Bands

Adsorption
2
|

0 500 1000 1500

‘ Time (sec)
& & o N
'\ CCSI {"F—T" ——

\v/ ,+//—m U.S. DEPARTMENT OF
<5 \&!
Lawrence Livermore -~ Pacific b Iz
National Laboratory - Los Alamos Nmthwest a W .
S TS O

1111111



Filtered Models with Heat Exchanger Tubes

Filtered Models for Gas-Particle Flows

Flows With Immersed Cooling Tubes

MICRO-SCALE
SOum-mm

Newton' s equations of motion
for each particle, Navier-Stokes
equations for the fluid flow in the

Validation
Studies I
s N
R
G

10sec 15sec

MACRO-SCALE
cn-m
MESO-SCALE

~ mm-em

Volume-averaged hydrodynamic
models for fluid and particle
phases.

Filtered volume-averaged
hydrodynamic models for fluid
and particle phases
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0.4
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o
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e
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size to cylinder
spacing

Milioli filtered TFM 05
256008 Fluid Static Pressure
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Quantitatively predicting scale up performance

CO2 Adsorption Rate
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CCSI CFD Validation Hierarchy

25 MWe, 100 MWe,
650 MWe
Solid Sorbent

Systems

g 1 MWe Carbon ﬁ
i CaptureSystem |

NETL Carbon Capture Unit (C2U)
Reacting Unit

Bubbling Bed Adsorber |  Moving Bed Regenerator

Prediction

Intermediate validation |
and calibration

. / F

;‘_"':"""_' """""" ! [ sttt R e

L intermediate Validation 1 ! Intermediste Validation

: (B by wif Fuasl (mecibony and : 1 [Regenssaios withaoul reactions

t Bawat tranules) I =\. arid haad franader]

I I
Filtered models ! H""""‘“‘“" : i |- e f

.1'-.---- rm.-‘.:-"‘;: i" M’ i ----- ’ -..J:

E [ o I [M....n.m.-dh.d...,]
- i Transtar : ' [Rigna rator]

Unit problem 1 Unit problem 3 Unit problem 2
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Solvent System Models & Demonstration

Basic data models  Process models
— Unified tool to calibrate solvent data — “Gold standard reference” process
— High Viscosity Solvent Model, 2-MPZ model, both steady-state and dynamic
— Properties model for Pz/2-MPz Blends — Methodology for calibration/validation
(Aspen) of solvent-based process models to
CED models support scale up

— VOF Prediction on Wetted Surface

— Prediction of mass transfer coefficients
by calibration of fully coupled wetted
wall column model

— Preliminary CFD simulation of a solvent
based capture unit

— Validation hierarchy

g ]
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est

£E R, U-S. DEPARTMENT OF
Carbon Capture Simulation Initiative ~ Z“FIFGY  ECrerraesawe i 2 8



Solvents: System Model Example & Validation

Lab & Pilot Scale

Experiments & Data

Physical Properties
Kinetics
Thermodynamics

Device Scale Models
Validated 3-D, CFD

Process Systems
Design, Optimization & Control
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Predictive Model Development & Validation

Simulated Temperature Profiles in Absorber for Vapor Phase
(DONG Test1A)

18 T T T T T T T T
T =2 __ Experimental and Simulated Reboiler Duties [DONG)
16 1 1500 ; : ; ; ;
14r 1 1400+ .
£ 12t 4 1300} -
g 10f . E, 1200 -
< g o, 0 g
“E 8- . a 1 1m B o lﬁ"’% . | -
2 o i % 1000} 1
4 Experimental data|| & G0d0F -
4r —ProTreat - AC O 1
—CO02SIM E aook ' ; i
oL —AspenRadFrac || E
— CHEMASIM
0 [ , — ‘ __AspenRatesep % o A ProTreat ‘
40 45 50 55 60 65 70 75 80 8 '
Temperature 600 O CO25IM
o AspenRadFrac
500 & CHEMASIM
4 ; i
ProTreat-Optimized Gas Treating, Inc.; CO2SIM-NTNU/SINTEF B0 o0 Simulsiod Reboller Duties (o) 0

CHEMASIM-BASF SE; AspenRatesep-modified by IFP

Luo et al., “Comparison and validation of simulation codes against sixteen sets of data from four different pilot plants”, Energy Procedia, 1249-1256, 2009
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Integrated Mass Transfer Model Development

» Diffusivity, viscosity, surface tension, interfacial area, and mass transfer
coefficients all important

« Data from both wetted wall column and packed column considered
* Simultaneous regression of these models not previously possible
« FOQUS has the capability of simultaneous regression

Usual approach: Sequential regression 12

°
0.9 ® L
0 /"/M’_. o®®
. -
o5 \ [ > 06 Might not exactly
Optimized model for predict the data of an

wetted wall column 03 absorber column
experiments

0 15 30 45 60

FOQUS capability: Simultaneous regression

ABSORE WWWC FOQUS can run multlple
simulations and optimize an
unique model for mass
% transfer and interfacial area
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CCSI Team Conducted Tests at NCCC

PSTU Flow Diagram
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Steady State Absorber Validation

No parameters tuned
Temperature Profiles

80
_. 10
P
Case 1: L/G=3.81 5 60
3 bed absorber with 5
two intercoolers < 50
(]
£ 40
2
30 ® Data
0 0.2 9'4 0.6 .. 0.8 1 Aspen Plus Example
Relative Column Position*
80 = UT Austin Aspen Plus
= CCS| Aspen Plus
:@ 70
Case 5: _ ® 60 1}
6.43 L/G ratio =
Intercooling present g 50
17.18% CO, in flue gas o °
e o ©
lG_J 40 |—e— v
30
0 0.2 0.4 0.6 0.8 1
Relative Column Position
‘ * Relative positions of 0 and 1 represent top and bottom of column, respectively
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Regenerator Validation
No parameters tuned

121

=
=
©

Case 1:
12000 kg/hr solvent
680 kW reboiler duty

Temperature (°C)

114 ® Data
0 0.2 0.4 0.6 0.8 1

Relative Column Position ,
122 —— UT Austin Aspen Plus

— Aspen Plus Example

120 = (CCSI Aspen Plus
Case 6:

7240 kg/hr solvent
425 kW reboiler duty

118
116

H
H
o

Temperature (°C)
H
H
N

110 ¢

108
0 0.2 04 0.6 0.8 1
Relative Column Position
* Relative positions of 0 and 1 represent top and bottom of column, respectively
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Advanced Computational Tools to Accelerate
Carbon Capture Technology Development

Lab & Pilot Scale

Experiments & Data

Physical Properties
Kinetics
Thermodynamics

Device Scale Models
Validated 3-D, CFD

Process Systems
Design, Optimization & Control
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CCSl status as of January 2016

« CCSI Toolset
— Suite of rigorous, validated, predictive models
— Computational tools
— Methodologies for UQ, validation, model development
— Broadly applicable to many carbon capture concepts

e How to maximize the benefit of CCSI investment and
accomplishments?

— Deploy the tools
— Utilize the tools
— Train industry

S U.S. DEPARTMENT OF

— rm i Lawrence Livermore 51 B Y
C C S I %L ‘ | LANau nal Laboratory é EN ERG

EEEEEEEEEEE




Carbon Capture Simulation for Industry Impact

Ty
- % CCsl

 Work closely with industry partners to help scale up

— Large scale pilots

» Help ensure success at this scale
— Employ simulation to predict performance, potential issue
— Help resolve issues using simulation tools

* Maximize learning at this scale
— Data collection & experimental design
— Develop & Validate models
— UQ to identify critical data

» Help develop demonstration plant design
— Utilize optimization tools (OUU, Heat Integration)
— Quantitative confidence on predicted performance
— Predict dynamic performance

— Partnership via CRADA
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