CO$_2$ Capture from IGCC Gas Streams Using the AC-ABC Process

2015 NETL CO$_2$ Capture Technology Meeting
June 25, 2015 Pittsburgh, PA

Anoop Nagar,
anoop.nagar@sri.com
Project Overview

• **Project Participants:**
 - SRI International.
 - Bechtel Hydrocarbon Technology Solutions, Inc.
 - ElG, Inc.
 - National Carbon Capture Center
 - U.S. Department of Energy (National Energy Technology Laboratory)

• **Funding:**
 - U.S. Department of Energy: $4,508,355
 - Cost Share (SRI and BHTS): $1,167,654
 - Total: $5,676,009

• **Performance Dates:**
 - October 2009 through September 2015.
Project Objectives

• Overall objective:
 – To develop an innovative, low-cost CO₂ capture technology based on absorption on a high-capacity and low-cost aqueous ammoniated solution with high pressure absorber and stripper.

• Specific objectives and project status:
 – Test the concept on a bench scale batch reactor (completed)
 – Determine the preliminary optimum operating conditions (completed)
 – Design and build a small pilot-scale reactor capable of continuous integrated operation (completed)
 – Perform tests to evaluate the process in a coal gasifier environment (scheduled in Sept 2015)
 – Perform a technical and economic evaluation on the technology
Process Fundamentals

- Uses well-known reaction between carbon dioxide and aqueous ammonia:
 \[\text{NH}_4\text{OH} + \text{CO}_2 \leftrightarrow \text{NH}_4\text{HCO}_3 \]
 \[(\text{NH}_4)_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \leftrightarrow 2\text{NH}_4\text{HCO}_3 \]
 \[\text{NH}_4(\text{NH}_2\text{CO}_2) + \text{CO}_2 + 2\text{H}_2\text{O} \leftrightarrow 2\text{NH}_4\text{HCO}_3 \]

- Reactions are reversible
 - Absorption reactions at lower temperature
 - Desorption reactions at higher temperature

- High pressure operation enhances absorption of CO\(_2\).

- A similar set of reactions occur between H\(_2\)S and ammoniated solution.

- H\(_2\)S from the regenerated gas is converted to elemental sulfur at high pressure.
Process Block Flow Diagram

Water Gas Shift
30 to 60 bar
230 – 285°C

Syngas Cooling
30 to 60 bar
40 to 60°C

AC-ABC CO₂ and H₂S Absorption

H₂(g)
30 to 50 bar

CO₂(g)
30 to 50 bar

Sulfur Recovery
30 to 50 bar

Solvent Regeneration CO₂ and H₂S Release

Rich Solvent
Temperature 130 to 200°C
Lean Solvent
Process Highlights

• Concentrated ammoniated solution is used to capture both CO₂ and H₂S from syngas at high pressure.
• Absorber operation at 40°-60° C temperature; No refrigeration is needed.
• CO₂ is released at high pressure (30 bar) at <200°C:
 – The size of CO₂ stripper, the number of stages of CO₂ compression, and the electric power for compression of CO₂ to the pipeline pressure are reduced.
• High net CO₂ loading, up to 20% by weight.
• The stripper off-gas stream, containing primarily CO₂ and H₂S, is treated using a high pressure Claus process, invented by Bechtel, to form elemental sulfur.
 – CO₂ is retained at high pressures.
Process Advantages

• Low cost and readily available reagent (aqueous ammonia).
• Reagent is chemically stable under the operating conditions.
 – Ammonia does not decompose under the operating conditions.
• High efficiency for CO₂ capture
 – Reduces water-gas shift requirements - Reduced steam consumption.
• No loss of CO₂ during sulfur recovery
 – High pressure conversion; No tail gas treatment
• Low heat consumption for CO₂ stripping (<600 Btu/lb CO₂).
• Extremely low solubility of H₂, CO and CH₄ in absorber solution: Minimizes loss of fuel species.
• Absorber and regenerator can operate at similar pressure.
 – No need to pump solution cross pressure boundaries. Low energy consumption for pumping.
CO₂ Capture Efficiency vs Solution Composition

CO₂ Capture Efficiency Exceeds 90%

- Run 17 (4 M, 50 C)
- Run 16 (4 M, 33 C)
- Run 18 (4 M, 45 C)
- Run 19 (4 M, 60 C)
- Run 20 (4 M, 43 C)
- Run 21 (8 M, 55 C)

Inlet CO₂ Partial Pressure 450 kPa

Reactor Volume = 0.0045 m³
Reactor Pressure = 265 psia
Inlet CO₂ Partial Pressure 450 kPa

Capture Efficiency (%)

R' (Molar Ratio, CO₂/NH₃)
Rapid Rate of Reactions Approaching Equilibrium

Absorber Operating Pressure = 1800 kPa (265 psia)
4 M and 8M Ammonia, 0.88 acfm CO2 flow rate (25 %v/v)

CO2 Partial Pressure at the Exit (psia)

- Run 17 (4 M, 50 C)
- Run 16 (4 M, 33 C)
- Run 13 (4 M, 45 C)
- Run 11 (4 M, 45 C)
- Run 18 (4 M, 45 C)
- Run 19 (4 M, 60 C)
- Run 20 (4 M, 43 C)
- Run 21 (8 M, 55 C)
- Equilibrium Line (10 M, 55 C)

R', Molar Ratio CO2/NH3
High Efficiency of H_2S Capture

Target < 1 ppm H_2S
Measured CO$_2$ Attainable Pressure Function of Temperature

![Graph showing the relationship between total pressure (psi) and temperature (°C) for different runs labeled AC-ABC. The graph includes data points for Run 1, Run 2, Run 3, Run 4, and Run 5, with a focus on the vapor pressure of water.](image-url)
AC-ABC Process Schematic
Slip Stream Test Set up
Absorber, Stripper, Water Wash Columns
Syngas Compressor and Gas Inlet Manifold
Process Skids
Bechtel Pressure Swing Claus (BPSC) Process
AC-ABC and BPSC Process Changes to IGCC Reference Case
Plant Performance Summary

<table>
<thead>
<tr>
<th>Plant Performance</th>
<th>Units</th>
<th>IGCC with SRI AC-ABC and BPSC</th>
<th>Reference Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Turbine Power</td>
<td>MWe</td>
<td>464.0</td>
<td>464.0</td>
</tr>
<tr>
<td>Syngas Expander Power</td>
<td>MWe</td>
<td>5.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Steam Turbine Power</td>
<td>MWe</td>
<td>246.2</td>
<td>263.5</td>
</tr>
<tr>
<td>Auxiliary Load</td>
<td>MWe</td>
<td>150.0</td>
<td>190.8</td>
</tr>
<tr>
<td>Net Plant Power</td>
<td>MWe</td>
<td>565.9</td>
<td>543.3</td>
</tr>
<tr>
<td>Net Plant Efficiency (HHV)</td>
<td>-</td>
<td>33.7%</td>
<td>32.6%</td>
</tr>
<tr>
<td>Net Plant Heat Rate (HHV)</td>
<td>kJ/kWh</td>
<td>10,679</td>
<td>11,034</td>
</tr>
<tr>
<td></td>
<td>Btu/kWh</td>
<td>10,122</td>
<td>10,458</td>
</tr>
</tbody>
</table>
Economic Analysis

<table>
<thead>
<tr>
<th>Economic Analysis (June 2011$)</th>
<th>IGCC with SRI AC-ABC and BPSC</th>
<th>Reference Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Plant Cost, before Owner's Costs, million</td>
<td>$1,676</td>
<td>$1,785</td>
</tr>
<tr>
<td>Total Plant Cost, before Owner's Costs</td>
<td>$2,962/kW</td>
<td>$3,286/kW</td>
</tr>
<tr>
<td>Initial Chemical Fill Cost, million</td>
<td>$4.3</td>
<td>$15.9</td>
</tr>
<tr>
<td>Annual Fixed O&M Cost, million</td>
<td>$64.5</td>
<td>$68.0</td>
</tr>
<tr>
<td>Annual Variable O&M Cost, million</td>
<td>$42.4</td>
<td>$45.9</td>
</tr>
<tr>
<td>Total Annual O&M Cost, million</td>
<td>$106.9</td>
<td>$113.9</td>
</tr>
<tr>
<td>FY COE* without TS&M**</td>
<td>$108.28</td>
<td>$118.85</td>
</tr>
<tr>
<td>FY COE with TS&M</td>
<td>$113.33</td>
<td>$124.04</td>
</tr>
</tbody>
</table>

*FY COE = First Year Cost of Electricity

**TS&M = Transport, Storage, and Monitoring
Anticipated Benefits, if Successful

• We estimate a 22.7 MW improvement in Net Plant Power and a 1.1 percentage point increase in Net Plant Efficiency (HHV basis) than a reference plant (GE gasifier with Selexol AGR and conventional Claus).

• Capital cost is ~6% less expensive than the reference plant on an absolute basis and 9% less on a normalized basis.

• The COE is 9% lower for the SRI AC-ABC and BPSC plant relative to the reference case.

• The process configuration is economically viable per this analysis.

• The process will be tested in this Budget Period at the National Carbon Capture Center.
Acknowledgement

• SRI International
 – Anoop Nagar, Gopala Krishnan, Indira Jayaweera, Marc Hornbostel, Jin-Ping, Bill Olson, Palitha Jayaweera, Srini Bhamidi, Jianer Bao

• EIG
 – Eli Gal

• Bechtel Hydrocarbon Treatment Solutions
 – Martin Taylor, Charles Kimtantas

• National Carbon Capture Center
 – Tony Wu, Scott Machovec

• DOE-NETL
 – Elaine Everett
DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Thank You

Headquarters: Silicon Valley
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493
650.859.2000

Washington, D.C.
SRI International
1100 Wilson Blvd., Suite 2800
Arlington, VA 22209-3915
703.524.2053

Princeton, New Jersey
SRI International Sarnoff
201 Washington Road
Princeton, NJ 08540
609.734.2553

Additional U.S. and international locations

www.sri.com