

ION Novel Solvent System for CO₂ Capture DE-FE0013303

Alfred "Buz" Brown, PhD ION Engineering

PROJECT OVERVIEW

Original Project: DE-FE0013303 ION Solvent System for CO₂ Capture

- 45 Month Project (Oct. 2013 Jun. 2017)
- Design, Build and Operate 0.5 MW Pilot at NPPD Gerald Gentleman Station in North Platte, Nebraska
- \$20.2M Total Project Funding
 - \$15.0M DOE
 - \$5.2M ION and Partners

Original Project Partners:

Project Objectives

Overall Objective

Using ION's proprietary advanced solvent demonstrate progress towards DOE's targets:

- 90% capture
- 95% purity
- ≤ \$40/tonne

Project Scope Change

Scope Changes: Key Tasks

Original Project Scope

- Pilot Design
- Engineering
- Layout & Integration
- Costing

BP 2Jan 2015-Mar 2016

- Procurement
- Construction & Fabrication
- Installation
- Commissioning

BP 3Apr 2016-Jun 2017

- Pilot Operation
- Benchmarking
- ION Solvent Demonstration
- Data Analysis

Revised Scope: PSTU

BP 1 Oct 2013-Dec 2014

- Pilot Design
- Engineering
- Layout & Integration
- Costing

BP 2Jan 2015-Mar 2016

- Solvent Procurement
- PSTU Modifications
- Pilot Operation
- Data Analysis
- Solvent Lifetime Testing

Current Project Participants & Roles

TECHNOLOGY OVERVIEW

Innovation

ION has developed a patented solvent technology that produces a more efficient & lower cost way to capture CO₂ than traditional methodologies

The ION Advantage

ION's proprietary technology has shown the following improvements

Solvent Performance

- Increased CO₂ Solubility
- Increased Solvent Kinetics
- Increased Solvent Working Capacity
- Decreased Regeneration Energy

Overall Impact

- Lower CAPEX
- Lower OPEX
- Lower Parasitic Load on the power plant

BUDGET PERIOD 1 – RESULTS

Budget Period 1 – Results

Task #	Task Description	Key Objectives	Accomplishments
1	Project Management	 Coordinate and plan project activities Maintain Budget, Schedule, Task Reviews, and Costs 	 PMP and related tasks were updated throughout project Weekly progress meetings held for Slipstream activities
2	Initial Slipstream Project Reviews	 Technology EH&S Risk Assessment Initial Techno-Economic Analysis 	 Initial EH&S Assessment completed by Hellman & Associates Initial TEA completed and accepted by DOE
3	Site Selection & Permitting	 Finalize host site selection Obtain necessary permits of pilot construction & operation 	 Host site selection process had two key decision points Final host site determined to be PSTU at NCCC
4	Final Pilot System Design	Final Pilot System DesignCost to Build System	 Final Design Package for ION Built Slipstream Unit at NCCC completed Final Design Package for PSTU modifications at NCCC completed

INITIAL TECHNO-ECONOMIC ANALYSIS

Initial Techno-Economic Analysis Basis

- Perform bottoms up simulation of ION solvent for economic analysis
- Modeling Platform ProTreat[®], Optimized Gas Treating
 - ION specific software package developed by OGT in collaboration with ION
 - ProTreat[®] software provides true rate based simulation package for chemically and physically reactive systems.
- Design Basis
 - 550 MWe net output
 - 90% CO₂ Capture
 - Per DOE Case 11/12 & QGESS Guidelines, July 2014

The ION Advantage

Using DOE's Prescribed Methodology, ION's Advanced Solvent Demonstrated:

- 47% Decrease in Capital Cost
- 28% Decrease in Regeneration Energy
- 27% Decrease in CO₂
 Capture Cost

BUDGET PERIOD 2 - PROGRESS

Budget Period 2 – Task Overview

Task #	Task Description	Key Objectives	Progress
1	Project Management	 Coordinate and plan project activities Maintain Budget, Schedule, Task Reviews, and Costs On-Boarding of Personnel 	 Regular meetings with project team, NCCC, and DOE ION Personnel needed for PSTU Testing have been on-boarded
5	Host Site Preparation	 Modifications necessary to PSTU ION Solvent Delivery Installation of mobile lab	Complete June 2015
6	Operational Preparation & Shakedown	 Develop Procedures for Operations Develop Test Plans Pilot System Commissioning & Shakedown Testing 	Complete June 2015
7	ION Solvent Testing	Solvent Testing on PSTU at NCCC	PSTU Testing Start June 22, 2015
8	Data Acquisition, Storage & Analysis	 Installation of Data Acquisition Systems Data Acquisition & Analysis Solvent lifetime testing with SINTEF 	 Data analysis of PSTU data on-going throughout testing SINTEF project to begin Q3
9	Decommissioning	Removal of ION related equipment	• N/A
10	Final Systems Analysis	Final Techno-Economic Analysis Final EH&S Risk Assessment	• N/A

Milestones for Budget Period 2

#	Milestone	Target Completion Date	Completion Date
1	PSTU Modifications Complete	5/15/2015	6/15/2015
2	ION Proprietary Solvent Delivery	5/29/2015	4/29/2015
3	Pre-Startup Safety Review	5/29/2015	6/16/2015
4	Pilot System Shakedown Complete	6/12/2015	6/20/2015
5	ION Solvent Testing Complete	9/30/2015	
6	Final TEA and EH&S Risk Assessment	2/26/2016	
7	Solvent Performance & Stability Assessment	2/26/2016	
8	Decommission & Dismantle	11/27/2015	
9	Final DOE Report & Presentation	3/31/2016	

Revised Project Schedule

	ION Engineering CO2 Capture Slipstream Project Schedule		Budget Period 1										Budget Period 2																		
			2013 2014									2015												2016							
			Q1		C		Q2		Q3		Q4		Q5			Q1			Q2			Q3			Q4			Q5			
		0	N	D	J	F	М	Α	M	J	J	Α	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N	D	J	F	M
Task	<u>Description</u>																														
1	Project Management																														
	Budget Period 1																														
2	Initial Slipstream Project Review																														
3	Site Selection & Permitting																														
4	Final Pilot & Systems Design Package																														
			-	-	-		-																								
	Budget Period 2																														
5	Host Site Preparation																														
6	Operational Preparation & Shakedown																														
7	ION Solvent Testing																														
8	Data Acquisition, Storage & Analysis																														
9	Decommissioning & Dismantle																														
10	Final Systems Analysis																														

DOE Slipstream BP2 Cost Summary

Source	Budget Period 1 (Oct 2013 – Dec 2014)	Budget Period 2 (Jan 2015 – Mar 2016)	New Scope Budget Total	Original Project Budget Total	Difference
DOE Funding	\$ 3,548,773	\$ 5,167,440	\$ 8,716,213	\$ 15,000,000	(\$6,283,787)
Cost Share	\$ 1,336,755	\$ 845,560	\$ 2,182,315	\$ 5,194,044	(\$3,011,729)
Total Project	\$ 4,885,528	\$ 6,013,000	\$ 10,898,528	\$20,194,044	(\$9,295,516)

NCCC PSTU TESTING UPDATE

PSTU Testing Preparation

- ION Solvent Delivered
- PSTU Modifications Complete
 - Mobile Lab Installation
 - Process Modifications
- Analytical Lab Technicians
 Onboarded and Trained
- Data Acquisition Systems
 Implemented and Tested
- Testing Begins: 6/22/15
 - Parametric Testing
 - 1,000 hour Steady-State

ION Solvent Testing

Parametric Testing Parameters

- Solvent Flow Rate
- Heat Rate
- Flue Gas Flow Rate

1,000 hr Steady State Test

 Optimized Conditions Based on Parametric Testing

NCCC PSTU Test Plan

Parametric Tests (24 hour Holds, 3 Groups, 3 Parameters, 4-5 Set points)

- A. Thermosiphon Flow Testing & Warm –Up
 - Confirm Mass and Energy Balances
- B. Parametric Group 1 LG @ 3.0 Adjust Reboiler Steam to Achieve % Capture
 - 1. Parameter 0 Target CO2 Capture 80%
 - Data Analysis and Set Point Verification
 - 2. Parameter 1 Target CO2 Capture 80%
 - 3. Parameter 2 Target CO2 Capture 90%
 - 4. Parameter 3 Target CO2 Capture 93%
 - System Idle and Analysis
- C. Parametric Group 2 LG @ 2.5
 - 1. Parameter 1 Target CO2 Capture 80%
 - 2. Parameter 2 Target CO2 Capture 90%
 - 3. Parameter 3 Target CO2 Capture 93%
 - System Idle and Analysis
- D. Parametric Group 3 LG @ 4.0
 - 1. Parameter 1 Target CO2 Capture 80%
 - 2. Parameter 2 Target CO2 Capture 90%
 - 3. Parameter 3 Target CO2 Capture 93%
 - System Idle and Analysis
- E. Stability Study
 - 1. Stability Study Target 1,000 hours
 - System Idle and Analysis

NEXT STEPS

Preliminary TCM Test Objectives & Timeline

Project Objectives:

- 1. Demonstrate ION's Advanced Solvent Technology Exceeds DOE's Performance Goals for 2nd Generation CO₂ Capture Technologies: 90% Capture and < \$40/tonne CO₂
- 2. Demonstrate Readiness for Large Scale Demonstration by end of 2017

TCM 13 MW	20	15	2016												
Pilot	Q3	Q4	Q1	Q2	Q3	Q4									
Activities	1.) Resolution of Risks Identified TCM: Test result from PSTU, and ION/SINTEF Collaboration, 2.) Contract Negotiations, and	Solver Test Pla	ermitting t Procurement n Development, Etc.	Test Period 1	TCM Planned Outage	Test Period 2									
	3.) Final Approvation DOE and T														

From the Technical Staff at ION:

ION

Nate Brown

Grayson Heller

Tyler Silverman

Greg Staab

Rene Kupfer

Reid Brown

Chuck Panaccione

Dan Swanson

Jenn Atcheson

Dillon Manzanares

Trent Hollis

Troi Bateman

Taikisha Enwright

Eric Negrey

Jason Bara (Univ. Alabama)

Thanks to Our Partners:

Optimized Gas Treating. Inc.

Nebraska Public Power District Always there when you need us

us

ProTreat
The industry's most

powerful gas treating simulation tool.

THE UNIVERSITY OF ALABAMA

(S) SINTEF

TRIMERIC Corporation

