ION Novel Solvent System for CO₂ Capture DE-FE0013303 Alfred "Buz" Brown, PhD ION Engineering ## PROJECT OVERVIEW # Original Project: DE-FE0013303 ION Solvent System for CO₂ Capture - 45 Month Project (Oct. 2013 Jun. 2017) - Design, Build and Operate 0.5 MW Pilot at NPPD Gerald Gentleman Station in North Platte, Nebraska - \$20.2M Total Project Funding - \$15.0M DOE - \$5.2M ION and Partners #### **Original Project Partners:** ## **Project Objectives** ## **Overall Objective** Using ION's proprietary advanced solvent demonstrate progress towards DOE's targets: - 90% capture - 95% purity - ≤ \$40/tonne ## **Project Scope Change** ## **Scope Changes: Key Tasks** #### **Original Project Scope** - Pilot Design - Engineering - Layout & Integration - Costing **BP 2**Jan 2015-Mar 2016 - Procurement - Construction & Fabrication - Installation - Commissioning **BP 3**Apr 2016-Jun 2017 - Pilot Operation - Benchmarking - ION Solvent Demonstration - Data Analysis ## **Revised Scope: PSTU** BP 1 Oct 2013-Dec 2014 - Pilot Design - Engineering - Layout & Integration - Costing **BP 2**Jan 2015-Mar 2016 - Solvent Procurement - PSTU Modifications - Pilot Operation - Data Analysis - Solvent Lifetime Testing ### **Current Project Participants & Roles** # **TECHNOLOGY OVERVIEW** #### **Innovation** ION has developed a patented solvent technology that produces a more efficient & lower cost way to capture CO₂ than traditional methodologies #### The ION Advantage ION's proprietary technology has shown the following improvements #### **Solvent Performance** - Increased CO₂ Solubility - Increased Solvent Kinetics - Increased Solvent Working Capacity - Decreased Regeneration Energy #### **Overall Impact** - Lower CAPEX - Lower OPEX - Lower Parasitic Load on the power plant # BUDGET PERIOD 1 – RESULTS # **Budget Period 1 – Results** | Task
| Task
Description | Key Objectives | Accomplishments | |-----------|---|--|---| | 1 | Project
Management | Coordinate and plan project
activities Maintain Budget, Schedule, Task
Reviews, and Costs | PMP and related tasks were updated throughout project Weekly progress meetings held for Slipstream activities | | 2 | Initial
Slipstream
Project
Reviews | Technology EH&S Risk Assessment Initial Techno-Economic Analysis | Initial EH&S Assessment completed by
Hellman & Associates Initial TEA completed and accepted by
DOE | | 3 | Site Selection & Permitting | Finalize host site selection Obtain necessary permits of pilot construction & operation | Host site selection process had two key decision points Final host site determined to be PSTU at NCCC | | 4 | Final Pilot
System Design | Final Pilot System DesignCost to Build System | Final Design Package for ION Built Slipstream Unit at NCCC completed Final Design Package for PSTU modifications at NCCC completed | ## INITIAL TECHNO-ECONOMIC ANALYSIS ## **Initial Techno-Economic Analysis Basis** - Perform bottoms up simulation of ION solvent for economic analysis - Modeling Platform ProTreat[®], Optimized Gas Treating - ION specific software package developed by OGT in collaboration with ION - ProTreat[®] software provides true rate based simulation package for chemically and physically reactive systems. - Design Basis - 550 MWe net output - 90% CO₂ Capture - Per DOE Case 11/12 & QGESS Guidelines, July 2014 #### The ION Advantage Using DOE's Prescribed Methodology, ION's Advanced Solvent Demonstrated: - 47% Decrease in Capital Cost - 28% Decrease in Regeneration Energy - 27% Decrease in CO₂ Capture Cost ## **BUDGET PERIOD 2 - PROGRESS** ## **Budget Period 2 – Task Overview** | Task
| Task Description | Key Objectives | Progress | |-----------|---|--|---| | 1 | Project
Management | Coordinate and plan project activities Maintain Budget, Schedule, Task
Reviews, and Costs On-Boarding of Personnel | Regular meetings with project team,
NCCC, and DOE ION Personnel needed for PSTU
Testing have been on-boarded | | 5 | Host Site
Preparation | Modifications necessary to PSTU ION Solvent Delivery Installation of mobile lab | Complete June 2015 | | 6 | Operational Preparation & Shakedown | Develop Procedures for Operations Develop Test Plans Pilot System Commissioning &
Shakedown Testing | Complete June 2015 | | 7 | ION Solvent Testing | Solvent Testing on PSTU at NCCC | PSTU Testing Start June 22, 2015 | | 8 | Data Acquisition,
Storage & Analysis | Installation of Data Acquisition Systems Data Acquisition & Analysis Solvent lifetime testing with SINTEF | Data analysis of PSTU data on-going throughout testing SINTEF project to begin Q3 | | 9 | Decommissioning | Removal of ION related equipment | • N/A | | 10 | Final Systems
Analysis | Final Techno-Economic Analysis Final EH&S Risk Assessment | • N/A | ## **Milestones for Budget Period 2** | # | Milestone | Target Completion
Date | Completion Date | |---|--|---------------------------|-----------------| | 1 | PSTU Modifications Complete | 5/15/2015 | 6/15/2015 | | 2 | ION Proprietary Solvent Delivery | 5/29/2015 | 4/29/2015 | | 3 | Pre-Startup Safety Review | 5/29/2015 | 6/16/2015 | | 4 | Pilot System Shakedown Complete | 6/12/2015 | 6/20/2015 | | 5 | ION Solvent Testing Complete | 9/30/2015 | | | 6 | Final TEA and EH&S Risk Assessment | 2/26/2016 | | | 7 | Solvent Performance & Stability Assessment | 2/26/2016 | | | 8 | Decommission & Dismantle | 11/27/2015 | | | 9 | Final DOE Report & Presentation | 3/31/2016 | | # **Revised Project Schedule** | | ION Engineering CO2 Capture
Slipstream Project Schedule | | Budget Period 1 | | | | | | | | | | Budget Period 2 |------|--|---|-----------------|---|---|---|----|---|----|---|----|------|-----------------|---|---|----|---|---|----|---|---|----|---|------|----|---|---|----|---|---|---| | | | | 2013 2014 | | | | | | | | | 2015 | | | | | | | | | | | | 2016 | | | | | | | | | | | | Q1 | | C | | Q2 | | Q3 | | Q4 | | Q5 | | | Q1 | | | Q2 | | | Q3 | | | Q4 | | | Q5 | | | | | | | 0 | N | D | J | F | М | Α | M | J | J | Α | S | 0 | N | D | J | F | М | Α | М | J | J | Α | S | 0 | N | D | J | F | M | | Task | <u>Description</u> | 1 | Project Management | Budget Period 1 | 2 | Initial Slipstream Project Review | 3 | Site Selection & Permitting | 4 | Final Pilot & Systems Design Package | - | - | - | | - | Budget Period 2 | 5 | Host Site Preparation | 6 | Operational Preparation & Shakedown | 7 | ION Solvent Testing | 8 | Data Acquisition, Storage & Analysis | 9 | Decommissioning & Dismantle | 10 | Final Systems Analysis | # **DOE Slipstream BP2 Cost Summary** | Source | Budget Period 1
(Oct 2013 – Dec 2014) | Budget Period 2
(Jan 2015 – Mar 2016) | New Scope
Budget Total | Original
Project
Budget Total | Difference | |----------------|--|--|---------------------------|-------------------------------------|---------------| | DOE
Funding | \$ 3,548,773 | \$ 5,167,440 | \$ 8,716,213 | \$ 15,000,000 | (\$6,283,787) | | Cost Share | \$ 1,336,755 | \$ 845,560 | \$ 2,182,315 | \$ 5,194,044 | (\$3,011,729) | | Total Project | \$ 4,885,528 | \$ 6,013,000 | \$ 10,898,528 | \$20,194,044 | (\$9,295,516) | # NCCC PSTU TESTING UPDATE ## **PSTU Testing Preparation** - ION Solvent Delivered - PSTU Modifications Complete - Mobile Lab Installation - Process Modifications - Analytical Lab Technicians Onboarded and Trained - Data Acquisition Systems Implemented and Tested - Testing Begins: 6/22/15 - Parametric Testing - 1,000 hour Steady-State ### **ION Solvent Testing** # Parametric Testing Parameters - Solvent Flow Rate - Heat Rate - Flue Gas Flow Rate #### 1,000 hr Steady State Test Optimized Conditions Based on Parametric Testing #### **NCCC PSTU Test Plan** #### Parametric Tests (24 hour Holds, 3 Groups, 3 Parameters, 4-5 Set points) - A. Thermosiphon Flow Testing & Warm –Up - Confirm Mass and Energy Balances - B. Parametric Group 1 LG @ 3.0 Adjust Reboiler Steam to Achieve % Capture - 1. Parameter 0 Target CO2 Capture 80% - Data Analysis and Set Point Verification - 2. Parameter 1 Target CO2 Capture 80% - 3. Parameter 2 Target CO2 Capture 90% - 4. Parameter 3 Target CO2 Capture 93% - System Idle and Analysis - C. Parametric Group 2 LG @ 2.5 - 1. Parameter 1 Target CO2 Capture 80% - 2. Parameter 2 Target CO2 Capture 90% - 3. Parameter 3 Target CO2 Capture 93% - System Idle and Analysis - D. Parametric Group 3 LG @ 4.0 - 1. Parameter 1 Target CO2 Capture 80% - 2. Parameter 2 Target CO2 Capture 90% - 3. Parameter 3 Target CO2 Capture 93% - System Idle and Analysis - E. Stability Study - 1. Stability Study Target 1,000 hours - System Idle and Analysis # **NEXT STEPS** ## **Preliminary TCM Test Objectives & Timeline** #### **Project Objectives:** - 1. Demonstrate ION's Advanced Solvent Technology Exceeds DOE's Performance Goals for 2nd Generation CO₂ Capture Technologies: 90% Capture and < \$40/tonne CO₂ - 2. Demonstrate Readiness for Large Scale Demonstration by end of 2017 | TCM 13 MW | 20 | 15 | 2016 | | | | | | | | | | | | | |------------|---|-----------------|---|---------------|--------------------------|---------------|--|--|--|--|--|--|--|--|--| | Pilot | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | | | | | | | | | | | Activities | 1.) Resolution of Risks Identified TCM: Test result from PSTU, and ION/SINTEF Collaboration, 2.) Contract Negotiations, and | Solver Test Pla | ermitting t Procurement n Development, Etc. | Test Period 1 | TCM
Planned
Outage | Test Period 2 | | | | | | | | | | | | 3.) Final Approvation DOE and T | | | | | | | | | | | | | | | #### From the Technical Staff at ION: ION Nate Brown **Grayson Heller** Tyler Silverman **Greg Staab** Rene Kupfer **Reid Brown** **Chuck Panaccione** Dan Swanson Jenn Atcheson **Dillon Manzanares** **Trent Hollis** Troi Bateman Taikisha Enwright **Eric Negrey** Jason Bara (Univ. Alabama) #### Thanks to Our Partners: **Optimized Gas** Treating. Inc. Nebraska Public Power District Always there when you need us us ProTreat The industry's most powerful gas treating simulation tool. THE UNIVERSITY OF ALABAMA (S) SINTEF **TRIMERIC Corporation**