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- Fracture spacing of the high-porosity
layer of the Middle Duperow Is based
on core fracture mapping and FMI
logging, and fracture aperture or
fracture permeability is based on the
step-rate injection test analysis and
sensitivity analysis;

- The matrix permeability (Km) is
based on the effective permeability
derived from the step-rate injection
tests, while matrix porosity is based
on core measurements;

- In addition to the MINC layer, only
the matrix continuum is considered
for the underlying Lower Duperow
and overlying Upper Duperow and
Nisku formations, with a total model
thickness of 237 m;

- Two scenarios for pressure
dissipation into other formations from
the Injection zone are considered
(see Table 1);

The Big Sky Carbon Sequestration
Partnership (BSCSP) recently drilled a
monitoring well and a CO,, production
well into Kevin Dome as part of the
Kevin Dome BSCSP Phase Il project.
The cores extracted from both wells
and the step-rate injection tests at the
monitoring well showed that the target
production/injection formation, the
Middle Duperow, is highly fractured in
Its high-porosity zone. To predict
pressure buildup and CO, plume
evolution in response to the planned
Injection rate of 1 million tonnes CO, in
four years, we developed a multiple
Interacting continua (MINC) model for
the 30 m-thick high-porosity layer.
Sensitivity analysis was conducted to
understand the effects on pressure
buildup and CO, plume evolution of
fractures, fracture permeability, and

Figure 1 shows the simulated AP at
the bottom of the injection well for six
cases in Scenario Il, while Figure 2
shows AP for the entire storage
system in the case of Kf = 40 md and
Km = 20 md in Scenatrio ll;

- The bottomhole injection pressure
linearly depends on Km in the case permeability (20 md) of the rock
of no fractures; matrix;

- The difference between different Kf - The CO, saturation differs in different
cases is not as large because of the continua at a given spatial location
fracture-matrix interactions for and time, with highest saturation in
pressure dissipation; the fracture continuum, and lowest

- Higher AP is obtained for Scenario Il saturation in the last matrix one;
because of smaller AP dissipation - The high CO, saturation in fractures
Into other formations. results in a higher relative
permeability and smaller AP;

- Matrix CO, saturation is very
sensitive to al.

The simulated CO,, plumes in the
fracture continuum and four matrix
continua have similar spatial extent
at any injection time (see Figures 3
and 4). The similarity is caused by
the low entry capillary pressure (at=
0.02 bar) and relatively high

- At the Kevin Dome site, site-specific
data show the Middle Duperow layer
to be used for CO, injection is highly
fractured,;

- To assess the impact of the presence
of fractures on pressure buildup and
CO, plume evolution, we developed
a MINC model for a 2D radial
TOUGH2 model, with one fracture
continuum and four matrix continua,

- The site-specific data used in the
model include matrix porosity from
core measurements, matrix
permeabllity from the step-rate
Injection test, fracture spacing from
core images, and fracture
permeabllity through different
sensitivity cases;

- The injection rate is constant at
250,000 Mt CO,, over four years;

- The simulated bottomhole injection
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