A Systematic Assessment of CO$_2$ Enhanced Oil Recovery and Co-Sequestration Potential in Ohio’s Depleted Oilfields

Caitlin, McNeil (mcneilce@battelle.org); Srikanth, Mishra; Jared, Hawkins; Erica, Howat; Autumn, Haagsma; Meghan, Yugulis; Isis, Fukai; Ashwin, Pasumarti; Taylor, Barclay.

Battelle, 505 King Ave., Columbus, Ohio 43201

ABSTRACT

The goal of this study is to develop process understanding and evaluate technical and economic feasibility of CO$_2$ utilization for enhanced oil recovery (EOR) and geologic storage in Ohio. Our focus is on depleted oilfields in the Clinton Sandstone (Eastern Ohio) and the Knox Dolomite Group (North-Central Ohio). These fields are promising candidates for CO$_2$-assisted EOR because of poor primary recovery efficiency that leaves behind approximately 80-90% of the original oil in place. A systematic assessment of EOR and co-sequestration potential for CO$_2$ in these depleted oilfields has not been undertaken to date – which is the objective of this research project.

[1] Reservoir Characterization
- Collected data on location and production history for major Ohio oilfields
- Evaluated geologic characteristics from well logs in selected fields

[2] Fluid Property Characterization
- Evaluated empirical correlations for CO$_2$ oil-brine-gas properties
- Created fluid property prediction toolbox

[3] Geologic Modeling and Storage Capacity Estimation
- Assessed available geologic data and rock properties
- Estimated CO$_2$ storage capacity in depleted oilfields
- Built geologic models for reservoir simulation

[4] Reservoir Modeling and Simulation
- Assessed simulation tools for CO$_2$ storage and CCUS
- Executed simulations for CO$_2$ Brine-DI interaction within modeled oilfields

[5] Source-Sink Matching and Pipeline Routing
- Assessed sources and volumes of stationary CO$_2$ emissions
- Mapped location of emission sources via a via depleted oilfields sinks
- Developed a pipeline routing methodology

[6] Economic and Cost-Benefit Analysis
- Created framework for cost-benefit analysis
- Collected inputs which impact CCUS costs
- Analyzed breakeven-cost of CO$_2$ feasibility for range of oil prices

CCUS in Ohio’s Depleted Oilfields