Abstract

The subsurface geologic storage of carbon dioxide (CO₂) represents a primary option for achieving reduced greenhouse gas emissions to the atmosphere. Key factors are important to successful commercial deployment: 1) good site selection, and 2) implementation of both conventional and innovative monitoring methods, which will ensure that active carbon capture and storage (CCS) operations are performing properly. Equally important to commercialization is the ability to provide assurances that negative impacts to human health and the environment will not occur in the future.

The Regional Carbon Sequestration Partnerships’ (RCSP’s) Water Working Group (WWG) has been using knowledge and experience gained from the RCSPs to understand how CO₂ containment in the subsurface can be achieved while enhancing the protection of freshwater resources. Research conducted by the RCSPs has provided insight on both the type of CO₂-trapping mechanisms prevalent in CO₂ storage reservoirs as well as strategies to make use of these mechanisms in storage formations across the United States. These mechanisms include structural/stratigraphic, hydrodynamic, mineral, residual-phase, and solubility trapping. WWG is also identifying best practices for water management during CCS, including the long-term protection of freshwater resources. WWG has produced a fact sheet that highlights these efforts to aid in communicating to all stakeholders of the CCS industry aware of work that is currently under way. WWG is also partnering with the IEA Greenhouse Gas R&D Programme to issue a special edition of the International Journal of Greenhouse Gas Control focused on water and CCS issues, to be published in 2016.

Mechanisms for the Subsurface Storage of CO₂

Target rock formations for geologic storage, such as depleted oil and gas reservoirs and deep saline formations, are much deeper than any usable groundwater and are separated from that groundwater by thick barriers of impervious rock. Generally, these barriers have already proved their effectiveness in containing CO₂ by keeping highly saline water separate from usable groundwater for millions of years.

Following CO₂ injection into the subsurface, several physical and chemical mechanisms actively store CO₂ and have the potential to ensure that the subsurface movement of CO₂ does not exceed beyond the boundaries of the storage system. These “trapping mechanisms” include structural/stratigraphic, hydrodynamic, residual-phase, solubility trapping, and mineral. Each of these mechanisms is briefly described below.

Structural/Stratigraphic Trapping

In a structural trap, CO₂ is physically trapped at the top of an anticline or a tilted fault block. It keeps CO₂ locked for millions of years by preventing the gas from further upward movement by the sealing rock (or cap rock).

A related trapping mechanism, known as hydrodynamic trapping, results when the intrusion of CO₂ into a formation drives the water, which has migration limited by capillary pressure from the water, which stops its movement. Over time, the displaced CO₂ will become stagnant in the water for millions of years. Residual-phase trapping occurs when the water becomes denser and begins to sink and displace the CO₂ into the formation water, promoting even more secure residual trapping.

Residual-Phase Trapping

At the tail of a plume, the concentration of CO₂ decreases, and it becomes trapped in the pore spaces between the rock by capillary pressure from the water, which stops its movement. Over time, free-phase CO₂ will dissolve into the formation water, promoting even more secure residual trapping.

Solubility (Dissolution) Trapping

The solubility of CO₂ in water increases with increasing pressure and decreases with increasing temperature and increasing water salinity. As the CO₂ dissolves in the water, the amount of CO₂ dissolved in the water can increase, promoting even more secure mineral trapping.

Mineral Trapping

When dissolved CO₂ meets with the mineral rock, carbonate rock can form, carbonating the CO₂ into an inorganic form. The dissolution of these mechanisms depend on the composition of the reservoir rock, the temperature and pressure of the reservoir, the chemical composition of the fluid, the water-rock contact area, and the rate of heat that flow through the rock. Mineral trapping is considered the most secure stage of CO₂ trapping. Understanding Long-Term Protection Through Proactive Research Programs

The U.S. Department of Energy (DOE) is proactively conducting fundamental and applied research to quantify the security of freshwater resources during subsurface CO₂ injection over a project’s lifetime (including both injection phase and site-closure). This research is focused on developing a complete understanding of this trapping/storage mechanisms discussed here and incorporating this understanding into mathematical models capable of predicting subsurface conditions over hundreds of years.

Furthermore, these efforts will be combined with the results of other research initiatives to define “best practices” that can be applied at the project, active, and postclosure stages of CO₂ geologic storage operations. Before injection, proactive actions emphasize proper site selection and the presence and thickness of impermeable barriers. Proper site selection includes analysis of factors such as pore space volume, injectivity, and formation permeability and porosity, to name a few. The selection of potential sites for CO₂ injection also excludes areas with groundwater containing less than 10,000 milligrams per liter of dissolved solids, since these areas of groundwater are considered protected freshwater by the U.S. Environmental Protection Agency. Research into appropriate pretreatment steps is complemented by investigating the real-time monitoring of the surface, near-surface, and subsurface environments during active injection to assess system performance and ensure the protection of water resources. This will help ensure the protection of freshwater resources, as well as compliance with the evolving regulatory framework during and following the widespread deployment of geologic storage of CO₂.