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We combine laboratory micro-scale experimental and 
modeling efforts to examine: 
 •  How does scCO2 interact with brines and mineral surfaces?     
    [multiphase flow] 
 •  What are the relevant physics of dissolved CO2 transport? 
    [reactive transport and rock-fluid interactions] 
 •  How can pore scale processes be synthesized and upscaled    
    into more powerful continuum models?   [upscaling] 
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Pore Scale Modeling for  
Reactive Transport 

• Transverse mixing-induced calcium carbonate (CaCO3) precipitation 
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Upscaling of Mixing-controlled  
Reactive Transport 
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Reactive Transport Results 
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3D Flow Field in a micromodel 
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Results 

•  Each field is time-
averaged over 200 
instants 

•  Each 2D velocity field 
shows fast flow in 
narrow pore throats and 
slow flow in wide pore 
bodies 

•  Good agreement 
between observed and 
simulated 2D fields 

•  Flow is uniform with 
depth, shown by similar 
patterns at all heights 

•  3D effects minimal in 
the steady flow and 
uniform geometry 
condition 
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CFD Simulation 

Boyd, Yoon et al. (GCA, 2014) 
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• Mineral precipitation rate along flow direction is concentration dependent and limited 
by transverse mixing 
• CaCO3 mineral phases (i.e., polymorphs) are chemistry dependent and affected by 
flow and kinetics 
• Overall, reaction kinetics, crystal growth and morphology are spatially and temporally 
affected by solution chemistry and hydrodynamics at pore scale 
• Pore-scale model can be used to test if pore-scale processes observed in micromodels 
is predicted, and to develop an upscaled reaction model 

Calcium Carbonate: Polymorphs 
[Ca2+]T=[CO3

2-] T =10mM & [Mg2+]T =40 mM [Ca2+]T=[CO3
2-] T =6.5 mM 

•  Simulations capture precipitation & dissolution patterns observed in the micromodel 
•  A decrease of precipitate area (dissolution) was captured by using a dissolution factor 

which accounts for high surface area of nano-particles, transformation to different forms 
of CaCO3, and stability of nano-particles after pore blocking as shown below 
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Simulated flow in a micromodel 
•  Mixing-induced chemical reactions can alter fluid properties (viscosity 
and density), mixing efficiency, and shear rate for engineered solutions 
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•  Pore scale model with high performance computing capability was 
used to test reactive transport experimental results under a variety of 
pore-geometry conditions 

•  Same model will be used to test flow experimental results under a 
variety of pore-geometry conditions 

•  Simulator reproduces flow experimental results under steady and 
constant geometry condition 

Inside fault zone: Porosity 
completely filled with calcite spar 

Outside fault zone: High porosity 
and absence of calcite cement 
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- Simplified 2-D response surface 
- Permeability (k) reduction due to 

calcite precipitation is a 
function of groundwater flow 
(Q) and fluid pressure (P) 

Time = 0 

Time = 1000 years 

- Unconditional geostatistical simulation 
- Initial flow pattern is qualitatively 

similar to the spacing of seeps along 
the Grand Wash fault (~100’s m) 

- k is reduced by several orders of 
magnitude by calcite precipitation, 
primarily in the shallower high-flow 
channels 

- Evolution of the flow field results in 
more dispersed groundwater 
discharge at the surface than observed 

Response Function based on Pore Scale Simulations 
• Phenomenological power law relations for continuum scale model can be derived from 
pore scale simulations (permeability-porosity, tortuosity-porosity, surface area-porosity) 
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Continuum Scale Modeling 

Influx conditions 
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Influx conditions: [Ca2+]T=[CO3
2-] T =20mM 

Summary and Implications 
• Vigorously tested pore-scale model can be used to develop a response function (or 
dimension reduction model) for continuum-scale relationships 
• k-ε and surface area-ε relationships will be developed over a range of solution 
chemistry, chemical reaction, and pore structure configurations 
• An adaptive strategy to couple continuum and pore-scale using a response function 
approach as well as hybrid pore-continuum model using p-Flotran) will be tested 

Little Grand Wash Fault, Crystal Geyser, Utah 

• Observations along the surface exposure of the Grand Wash fault indicate 
alteration zones of 10-50 m width with spacing on the order of 100 m 
• Locations of conduits controlled by fault-segment intersections and topography  
• Sandstone permeability reduced by 3 to 4 orders of magnitude in alteration zones 
by carbonate cementation 
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