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Benefit to the Program

Develop and validate technologies to ensure 99 percent
storage permanence.

Develop technologies to ensure containment
effectiveness.

Develop Best Practice Manual for monitoring,
verification, accounting.

This project is developing next-generation surface and
airborne (UAV) technologies that perform well and can
be deployed rapidly and at reasonable cost. Technology
to be deployed at the Southwest Regional Carbon
Sequestration Partnership’s Farnsworth Pilot Site.



Project Motivation

=ETEE  «  Surface monitoring integral to
pilot programs; facilitates public
acceptance.

« Major spatial sampling issues
with current technology.

* Questions whether current

technology is capable of
detecting leaks.

* Deployment labor-intensive,
expensive.

* New surface-based and UAV-
based technology has potential
to solve spatial sampling issue,
reduce project costs. 4
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Project Overview:
Goals and Objectives

Evaluate low-cost sensors for carbon dioxide
and methane.

Develop ground-based and airborne (UAV-)
based sensor platforms that minimize the labor
cost associated with long term monitoring.

Collect data from an active injection site for a
period of at least one year.

Develop monitoring strategies that minimize the
need for ground-based monitoring while
preserving the quality of the monitoring effort.



Project Team, Roles, Responsibilities,
Project Organization

* Project Team: Oklahoma State University
« Chemical Engineering

« Peter E. Clark, PI
Geology

« Jack Pashin, Co-PI, Geological Evaluation
Chemistry

* Nicholas Materer, Co-Pl, Sensor Development
Civil Engineering

* Tyler Ley, Co-Pl Sensor Development
Mechanical Engineering

« Jamey Jacobs, Co-PIl, UAV

» Girish Chowdhray, Co-PI, Data Analysis



Technical Status

Geological characterization and assessment of
leakage risks.

Sensor evaluation and deployment using
surface and airborne platforms.

UAV evaluation and testing; and deployment at
Farnsworth Oil Unit.

Application of advanced data analysis
techniques.

Technology Transfer, Best Practices Manual.



Farnsworth Oil Unit

Operator: Chaparral Energy

Reservoir: Morrow Sandstone (Penn.)
Oil Production: > 36 MMbbl

CO,-EOR operations since 2010

SWP Phase Il CCUS project underway

-101.010287




Stratigraphic Column
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Surface Formations

Scale (ft)
100

Caliche with
chert lenses
90

Caprock

Chert breccia

Well jointed

70
Sand and loam

60

50
Ogallala Fm.
40
Joints in
indurated
10 layers
20
Silty sand with
caliche nodules

10




etworks

O,
5
Z

Satellite image
Chert caprock

Outcrop photo
| Ogallala sandstone

11




Joint Orientation

/ Focal mechanism S
/ Borehole breakou<t? — Modern stress
/ hydrofractures indicators

|

o



Geological Findings

* Multiple seals between reservoir
and USDW.

 Natural fractures influence flow
in USDW and chert caprock.
O, from meteoric | - - O ] .
carbonate dissolution * , i B il * Abundant natural sources Of
o ' COzandCH4 . .
R CO, and microbial CH,4 near

surface.

Point-source

Line-source plumes '




Sensor Development

Goal: Develop a reliable and cost-effective
distributed sensor network to monitor CO, and CH,
emissions (solar powered, minimal maintenance).

Eight CO, and six CH, sensor elements investigated.

Three sensors were chosen based on their price and
accuracy

Lessons learned:
Almost none arrived correctly calibrated
« Automatic background/baseline corrections lead to
Inaccuracies
« Datasheets were incomplete; significant effort to get
them to work properly



Progress

120 sensing nodes have been constructed

10 sensing nodes have been deployed on
the OSU campus and are performing well

Wireless networking is still being perfected

These nodes will be installed at the field
site in September.
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Sensor Elements
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Basic Sensor Node

« CO, Sensing

— 0 to 5000 ppm “\“&
— background ~400 ppm
« CH, Sensing. <<< >>> Power
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4//' [ Lead Acid

— 0-500 ppm, background < 1 ppm

*  Wireless Networking

Supervisor
AN

3.3 and 5V
Supplies

~remld Y/

Network Power Sensor
Control Management Control

Arduino Based Processing Y

e 74
( co. ) ( Pressue )

( e ) (randrn )

Wake-Up Alarm ( Storage
k Real Time Clock

Glue Electronics




UAV Setup

Skywalker X-8

- EPO Foam

Capacity, durability, stability
7/’ Span, 10 Ib GTOW

30 min w/ 10000 mah LiPo st atetie
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FPV Camera




Example Flight Path




UAV Setup

Aircraft layout
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Stabilis Autopilot

OSU Stabilis: Mission flexibility and accuracy
— Waypoint-driven flight planning
— Interfaces with a variety of planners
Modular sensor and power integration
— Parallel embedded Linux modules
* “Plug and play” autopilot
— Adapts to mission needs and minimizes
tuning of control gains

hitp://beagleboard.org/Products/BeagleBone%?2

Stabilis interfaces with a 5}

Beaglebone Black 21




Wind tunnel tests for
flow rate and response
time

OSU low speed wind
tunnel

3’ x 3’ test section
55 knot max speed




Test Results
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Test Results

CO, Sensor — Response Time
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Test Results

Fire in distance
* Fire observation flight
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Information Fusion using GP

Gaussian Process: Bayesian Nonparametric model for
spatially correlated distributions

Distributed static and dynamic heterogeneous agents learning
parts of the CO, and CH, models

Naive data sharing can overwhelm the network, how to
minimize communication for distributed inference?

Transmit compressed generative GP models instead of 0 — 3

transmitting data
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Accomplishments to Date

Field site at Farnsworth Oil Unit.

Geologic framework characterized; hypotheses
formulated to help guide field operations.

Robust and cost-effective near-surface and airborne
sensors identified.

UAV platform selected, instrumented, field-tested.

Data management and processing techniques
evaluated and tested.

Ready for deployment at Farnsworth.
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Synergy Opportunities

 Limitless opportunities for collaboration.

« Sensor technologies deployable for a broad range
of geological and operational monitoring

applications.

« Sensor development and application fertile ground
for collaborative research.

* UAV monitoring technology has utility at virtually all
storage sites and can perform multiple tasks
simultaneously (i.e., flux monitoring plus checking
on status of operations).

* Wider deployment of technology helps define
applicabllity, limitations, and best practices. 28



Summary

Numerous shale and evaporite seals make Farnsworth a
favorable storage site.

Abundant natural fractures and natural CO, and CH,
sources near surface; facilitate heterogeneous gas flux.

|dentifying robust and cost-effective options for near-surface
and airborne CO, and CH, sensors required compromises.

UAVs instrumented, tested.

Gaussian Process viable approach to data manipulation and
modeling.

Ready for field deployment at Farnsworth.
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Appendix

— These slides will not be discussed during the
presentation, but are mandatory

30



Organization Chart

Oklahoma State
University

Dr. Peter Clark, PI

DOE-NETL,
Contracting Office

Representative

Dr. Tyler Ley and Dr. Dr. Girish

Dr. Jamey Jacob, UAV
Deployment and

Operation

Dr. Jack Pashin, Maderer, Sensor and
Geologic Evaluation Network Design and
Development

Chowdhary, Data
Analysis and Model
Development
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Gantt Chart

Year 1 (2013-14) Year 2 (2014-15) Year 3 (2015-16) Check
Qt | a2 | a3 | a4 Qi | a2 | a3 | a4 Qi | a2 | a3 | a4

Task 1.0 Project Managementand Planning : $ -
Task 1.0 Project Management and P lanring $ 239,993

i L $ -

Task 2.0 Geologic Evaluation 2 E $ -
Subtask 2.1 Site Selection | : Z $ 58,144
|s ubtask 2.2 Geologic Framework | : I $ 66,024
S ubtask 2.3 Leakage E valuation o $ 137,449

| L $ .

Task 3.0 Land-Based Sensor System | ! ; $ -
S ubtask 3.1 Sensor Development and E valuation I 1 l $ 314,129
IS ubtask 3.2 Sensor Network Design & Assembly | : | $ 235,597
S ubtask 3.3 S ensor Network Deployment, Monitoring |Remova| $ 508,369

a L $ -

Task 4.0 UAV Design, Evaluation, and Deployment b $ -
SubTask 4.1 UAV Design 2 b $ 87,928
|s ubtask 4.2 UAV E valuation | ! I $ 59,753
[s ubtask 4.3 UAV Deployment & Monitoring |} [Removal | $ 141,310

z L $ -

Task 5.0 Data Analysis | P $ -
Subtask 5.1 Data P reparation | T $ 71,196
|s ubtask 5.2 Predictive Repres entation o $ 75,114
{ |s ubtask 5.3 Systém Optimization $ 117,189

| T s -

Task 6.0 Technology Transfer i | : $ -
Task 1.0 Project Management and Plann'ing $ 145,770

| $ :
$168,214 $246,746 $261,282 $301,063 $155,491 $155,491 $169,820 $144,012 $163,737 $163,737 $163,737 $163,737 | $ 2,257,965

Total BP1 $

977,304 | Total BP2 $ 625,713 |
I

Total BP3 $ 654,948

per sub task

e Current Status
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