Utilization of CO₂ in Unconventional Reservoirs

Project Number 58159

B. Peter McGrail H. Todd Schaef Pacific Northwest National Laboratory

Collaborating Institutions

University of Wyoming

University of Hawaii

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 18-21, 2015

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂ and most common contaminants
- Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of CO₂ in unconventional geologic formations (basalts and shales) for long term subsurface storage and enhanced gas recovery. Findings from this project will advance industry's ability to predict CO₂ storage capacity in geologic formations.

Basalt Project Overview: Goals and Objectives

- Goal: Provide a path forward for commercial use of deep basalt formations for CO₂ sequestration
- Objective: Address key challenges associated with utilization of basalt formations as CO₂ storage units
 - Conduct laboratory research that addresses commercialscale injection strategies
 - Provide laboratory measurements for predicting CO₂ fate and transport
 - Improved seismic imaging methods for basalt characterization

Basalt Project Overview: Scope of work

- Carbonate Mineralization of Basalts in Aqueous-Dominated Fluids
 - Carbonation rates and key variables important to evaluating long term storage of CO₂
 - High pressure scCO₂ batch experiments
 - Low temperature magnesite
 - Aqueous dominated reactions, long-term testing

Magnesite particles forming after 56 days at 50°C and 90 bar.

- Basalt Reactions with Wet scCO₂
 - Dynamic geochemistry occurring in adsorbed H₂O films.
 - Visualization of Mineral Carbonation in Wet scCO₂
 - Impacts of Organic Ligands on Carbonation
 - Modeling Silicate Surfaces in Contact with scCO₂ using AIMD Simulations

Phase Behavior of CO₂-H₂O Mixtures in Geological Sequestration

CO₂-H₂O Mixtures

- CO₂ solubility in water varies little with pressure and temperature
- H₂O solubility in scCO₂ is strongly dependent on depth
- An equivalent geochemical framework for chemical reactivity in wet scCO₂ does not yet exist

Mineral transformation kinetics is potentially as great or greater in wet scCO₂

Dynamic mineral reactivity and crystalline product formation in H₂O films

Goal: Characterize the dynamic geochemistry occurring in adsorbed H₂O films.

Experimental Conditions: Constant temperature (50°C) and pressure (90 bar), with dry to variable wet $scCO_2$.

Results: Mg-carbonate surface complexes predominate before a threshold adsorbed H_2O concentration. Beyond the threshold adsorbed H_2O concentration, magnesite precipitates.

Water film Growth

Carbonate Precipitation

Wet scCO₂ and Mineral Surface Interactions

- **Goal:** Characterize the dynamic geochemistry occurring in adsorbed H_2O films
- Water film growth (OH stretch)
- Carbonate precipitation (Asymmetric CO stretching bands)
- Mineral dissolution and precipitation of amorphous silica (SiO stretching bands)

Implications: Significant reactivity highlights need for reservoir simulators to account for reaction kinetics in wet $scCO_2$ fluids.

Other minerals studied: forsterite, albite, brucite, antigorite, and enstatite, and microcline

In Situ, High-Pressure IR Spectroscopy

Visualizing Mineral Carbonation in Wet scCO₂

Pressurized Atomic Forced Microscopy

- \succ Carbonation in wet scCO₂
 - Controlling factors
 - Modeling parameters
- Carbonation Products
 - Nucleation sites
 - Growth habits and morphologies
- Intrinsic Rate Constants
 - Water concentrations in scCO₂
 - Variability in water film thickness

Experimental Approach: Brucite, when exposed to a steady stream of humid $scCO_2$ at 50°C and 90 bar, forms islands of nesquehonite clearly visible on the brucite surface.

Mineral Carbonation: *in-situ* AFM images of brucite surface, 1) unreacted, and after contact with wet scCO₂ for 2) 10 minutes and 3) 3.8 hours (50 °C, 90 bar).

AIMD Simulations Designed to Model Water film Growth on Silicate Surface in Contact with Wet scCO₂

- AIMD simulations of free energy of adsorption and reactivity at a Mineral/H₂O/scCO₂ interface
 - Mechanism of water layer nucleation and growth at solid/ liquid interfaces occurs even at the low (10⁻⁴) water solubility in scCO₂.
 - Water facilitates reactivity to form cation vacancies on the surface, leading to carbonate formation, in agreement with exp. observations.
- Wet scCO₂ can lead to unique speciation, structural transformations, and unexpected reactivity at solid/liquid interfaces.

Basalt Project Overview: Scope of work

- Wallula Basalt Pilot Project Support
 - Field Activities
 - Detailed wireline survey characterization
 - Groundwater sampling
 - Targeted side-wall coring
 - Extended hydrologic tests
 - Final well decommissioning/site demobilization.
 - Laboratory Activities
 - Side wall core characterization.

Flood Basalt Features Relevant to CO₂ Sequestration

- Formation process •
 - Giant volcanic eruptions
 - Low viscosity lava •
 - Large plateaus
 - Multiple layers
- **Primary structures**
 - Thick impermeable seals
 - Caprock (flow interior)
 - **Regional extensive interbeds**
 - Permeable vesicular and brecciated interflow zones
 - **Injection targets**
 - 15-20% of average flow

Deccan Trap Basalts

Layered Basalt Flow

Wallula Basalt Carbon Sequestration Pilot Project

Project Background:

- Drilling initial test characterization and well completion: Jan. – May 2009
- Extended hydraulic test characterization: Feb. – March 2011 and Sept. – Nov. 2012
- ~1,000 MT CO₂ injection: July 17th August 11th, 2013
- Post-injection air/soil monitoring and downhole fluid sampling performed for ~2 years following injection

Current Status:

- Final well characterization activities: June July 2015
- Detailed wireline survey
- Targeted sidewall coring
- Extended hydrologic tests
- Final well decommissioning/site demobilization: August 2015

Wallula Basalt Pilot Well: Final Wireline and Hydrologic Characterization

Extended duration hydrologic injection test

- Assess large scale changes in aquifer reservoir hydraulics
- 18,000 gallons of water was injected over 3.7 days (avg. rate of ~3.4 gpm).
- Post injection recovery was monitored over a 5 day period
- 7 low-stress (i.e. ΔP ≈ 13 psi), near-field pressurized slug tests (i.e. pulse tests)
 - Near-field reservoir hydraulic properties immediately surrounding the open borehole
- Short-duration constant rate drawdown and recovery test
 - Near-field reservoir hydraulic properties extending a few 10's of feet from the borehole

Detailed wireline survey for detecting CO₂ and geochemical and physical property changes (porosity) in injection zone basalt flow tops:

- Fluid temperature/pressure/gamma (4-2,901 ft)
- Platform Express logging suite (2,400 2,904 ft)
- Formation Micro Imager (2,720 2,904)
- Residual Saturation Tool Sigma (100 2,904 ft)
- Residual Saturation Carbon/Oxygen (2,710 2,904)

Injection zone still exhibits a well-defined temperature signature (+4 °F) 22-months after injection termination.

Fluid Tertition Hatuggen Sgr Ressyr Results

Wallula Basalt Pilot Well: Initial Sidewall Core Characterization

- 50 sidewall cores were collected across the open borehole section between 2,716 – 2,900 ft bgs
- Potential carbonate reaction products observed on SWC samples occur both as large (up to ~1mm) nodules within open vesicles and as a coating on the borehole wall face of a few core samples
- XRD analysis of selected carbonate nodules identified ankerite as the only carbonate mineral present

2,810 ft Core Sample (Post-injection)

Wallula Basalt Pilot Well: Initial Sidewall Core Characterization

XMT imaging of post-injection sidewall core sample collected from 2,810 ft bgs

- XMT imaging shows likely ankerite nodules existing throughout core
- Chemically, these ankerite nodules are initially dominated by Ca, but become Fe rich as the precipitation progresses.

SEM micrograph of polished cross section of ankerite nodule (EDX analysis ID #)

Summary

Key Findings

- Reactions occurring between silicate minerals and H₂O-scCO₂ fluids produce well crystallized carbonate minerals at laboratory time scales.
- Carbonation occurs after adsorbed water films become thick enough to solvate and transport cations and bicarbonate ions.
- Atomistic modeling provides insights into dynamic chemical environment occurring in thin water films.
- Basalt Pilot Project providing first time evidence of *in situ* carbonation analogous to laboratory results

"CO₂ storage in basalt formations is also a potentially important option for regions like the Indian subcontinent " IEG Technology Roadmap, 2009.

FY 16 Planned Activity

- Expanded scope to examine importance of water bearing scCO₂ on relevant silicate minerals
- Continued laboratory support for basalt pilot project including isotopic characterization of carbonate precipitates

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

	l		Detailed	Sche	dule										
					I		Γ.			2014		L .	r	r.	
				Oct	Nov	Dec	Jan	Feb	March	April	May	June	July	Aug	Sept
	Task Name														
#	Project Management	Start	Finish												
1	Manage Project	Oct-13	Sep-14								1				
2	FY14 Q1 Report	Oct-13	Dec-13				†								
3	FY14 Q2 Report	Jan-14	Mar-14												
4	FY14 Q3 Report	Apr-14	Jun-14										-		
5	FY14 Q4 Report	Jul-14	Sep-14												
			Mileston												
6	Milestone Description		e Date Dec-13												
U	Submit journal article detailing experimental results of volumetric changes occurring in swelling clays when exposed to variable wet scCO2. The paper will focus on model clay minerals important to shales.		Dec-13			-•									
7	Submit journal article providing a preliminary analysis of the economics of CO2 storage in shale reservoirs. This will include a specific discussion of the economics associated with storage of mixed gas streams.		Dec-13			_ •									
8	Submit journal article on gas adsorption on clay minerals. This manuscript will demonstrate several different in situ techniques that identify the location and amount of CO2 and CH4 on clays important to shales.		Mar-14						•						
9	Complete synthesis of flexible MOF framework, obtain sound absorption coefficients using impedance tube measurements and issue journal article on synthesis and characterization of flexible framework materials.		Mar-14						•						
10	Submit journal article detailing molecular simulation results on model silicate minerals (i.e. plagioclase and pyroxene), in water saturated scCO2. This study can provide structural information and spectroscopic signatures of the species and correlate with experimental data from XRD and vibrational spectroscopies.		Jun-14									_ •			
11	Complete laboratory testing on silicate minerals in the H2O- scCO2 system and submit manuscript describing water film development occurring on silicates when exposed to variable wet scCO2. The study will utilize the in situ infrared flow through system to track the growth of these water films.		Jun-14									_ •			
12	Molecular simulations of sorption mechanisms between model silicate/layered minerals and water saturated scCO2. These simulations can provide connections between structure, spectroscopy and thermodynamic properties in these systems in conjunction to concurrent experimental work.		Sep-14												
13	Submit journal article on filed scale simulations of EGR utilizing CO2 in depleted shale gas or shale oil reservoirs. The manuscript will incorporate laboratory derived adsorption data for important clay minerals.		Sep-14												
Sec	ject: Capture and questration Support rvices	Task Quartly Report	•		Milest	tone			Pha	ise =		-			

19

- Bacon, D.H., Ruprecht, C.M., Schaef, H.T., White, M.D., McGrail, B.P., (2015). "CO₂ Storage by Adsorption on Organic Matter and Clay in Gas Shale", <u>Journal of</u> <u>Unconventional Oil and Gas Resources</u>, submitted.
- Qafoku, O, DA Dixon, KM Rosso, HT Schaef, et al., **2015**. "Dynamics of Magnesite Formation at Low-Temperature and High-pCO₂ in Aqueous Solution", <u>ES&T</u>, accepted.
- Lee, MS, BP McGrail, R Rousseau, and VA Glezakou, (2015). "Structure, dynamics, and stability of water/scCO₂/anorthite interfaces from first principles molecular dynamics simulations", <u>Nature Scientific Reports</u>, accepted.
- Loring, JS, J Chen, P Benezeth, et al., (2015), "Evidence for carbonate surface complexation during forsterite carbonation in wet scCO₂", <u>Langmuir</u>, Vol 31, Issue 27, pages 753-43.
- Miller, Q.R.S., Kaszuba, et al., (**2015)**. "Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO₂ Fluids", <u>ES&T</u>, Vol 49, issue 7, 4724-4734.
- Schaef, H. T.,J. A. Horner et al., (2014), Mineralization of Basalts in the CO₂-H₂O-SO₂-O₂ System, <u>ES&T</u>, vol 48, issue 9, 5298-5305.
- Thompson, C. J.; Martin, P. F.; Chen, J.; Schaef, H. T.; Rosso, K. M.; Felmy, A. R.; Loring, J. S. (2014) "Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection", <u>Reviews of Scientific Instruments</u>, vol 85, issue 4, 044102.
- Schaef, H. T., B. P. McGrail, et al. (2013). "Mineralization of basalts in the CO₂-H₂O-H₂S system ." <u>IJGGC</u>, vol 16, 187-196.
- Schaef, H.T., Q.R.S. Miller, C.J. Thompson, et al., (2013) "Silicate Carbonation in scCO₂ Containing Dissolved H₂O: An in situ High Pressure X-Ray Diffraction and Infrared ²⁰ Spectroscopy Study", <u>Energy Procedia</u>, vol 37, 5892-5896.

Bibliography (cont.)

- Bacon, KH, R. Ramanathan, HT Schaef, and BP McGrail, (2014), Simulating geologic co-٠ sequestration of carbon dioxide and hydrogen sulfide in a basalt formation, IJGGC, vol 21, 165-176.
- Miller, Q., Thompson, C., et al. (2013). "Insights into silicate carbonation in water bearing ٠ supercritical CO₂", <u>IJGGC</u>, Vol 15, 104-118.
- Schaef, H. T., B. P. McGrail, et al. (**2012**). "Forsterite [Mg₂SiO₄)] Carbonation in Wet ٠ Supercritical CO2: An in situ High Pressure X-Ray Diffraction Study." Environmental Science & Technology, vol 47, 174-181.
- Schaef, H. T., B. P. McGrail, et al. (2011). Basalt reactivity variability with reservoir depth ٠ in supercritical CO₂ and aqueous phases. <u>GHGT10</u>. Amsterdam, Netherlands, Energy Procedia: 4977-4984.
- Schaef, H. T., B. P. McGrail, et al. (2010). "Carbonate mineralization of volcanic province ٠ basalts." International Journal of Greenhouse Gas Control 4(2): 249-261.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water ٠ Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696
- Schaef, H. T. and B. P. McGrail (2009). "Dissolution of Columbia River Basalt under ٠ mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide." <u>Applied Geochemistry</u> **24**(5): 980-987.
- McGrail, B. P., H. T. Schaef, et al. (2006). "Potential for carbon dioxide sequestration in • flood basalts." Journal of Geophysical Research-Solid Earth 111(B12201): ARTN B12201.

Utilization and Storage of CO₂ in Unconventional Reservoirs

Project Number 58159 Task 2

H. Todd Schaef

B. Pete McGrail

Pacific Northwest National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 18-21,2015

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂
- <u>Project benefits statement</u>: This research project conducts modeling and laboratory studies to lower cost and to advance understanding of storing pure CO₂ and mixed gas emissions produced from post- and oxycombustion flue gas in unconventional geologic reservoirs.

Project Overview: Goals and Objectives

- Goal: Development of geologic storage technology with a near zero cost penalty goal – a grand challenge with enormous economic benefits.
- Objective: Employ a multidisciplinary approach for identifying key sequestration opportunities and for pursuing major research needs in:
 - Identifying R&D needs and pursuing R&D on promising low-cost technologies for utilizing CO₂ and CO₂ containing other constituents in depleted shale gas and shale oil reservoirs.
 - phase behavior and fate and transport of supercritical gas mixtures in fractured geologic formations.
 - casing material studies with water and mixed gas systems
 - development of acoustically responsive contrast agents for enhanced monitoring of injected CO₂.

Project Overview: Scope of work

- Task 2 Utilization in Unconventional Reservoirs
 - 2.1 Storage in Depleted Shale Gas Reservoirs
 - Economics of Utilizing CO₂ in Depleted Shale Gas Reservoirs
 - Laboratory Studies
 - Probing structural changes on natural shale samples during scCO₂ exposure
 - Characterizing Water Film Development and Mineral Stability during exposure to wet acid gases
 - Quantify water solubility in CH_4/CO_2 gas mixtures at reservoir conditions
 - Distinguish interactions between metal cations and scCO₂: chemical reactivity versus physisorption processes

Molecular Dynamics Modeling

- Independent check on the sorption behavior of CO₂ on the external surfaces of minerals
- Provide mechanistic insight into CO₂ intercalation
- Reservoir Modeling
 - ✤ Field scale simulation utilizing CO₂ in a depleted fractured shale reservoir utilizing CO₂
 - ✤ Incorporate laboratory findings to optimize methane production
- 2.2 Enhanced Monitoring Agents
 - Synthesis methods and performance testing in a laboratory setting
 - Newly developed laboratory technique for low frequency measurements

Costs, Offsetting Revenues, and Deployment Potential of EGR in Gas Shales

- Using three $CO_2:CH_4$ recovery relationships taken from the literature, Davidson & McGrail (2015) developed revenue estimates associated with the CO_2 injection phase of a shale-based CCS project
- These three revenue cases were used to parameterize scenarios evaluated via least-cost optimized source-sink pairing to generate cost curves for CCS in the U.S. to illustrate the impact of CO₂:CH₄ response on the potential for shale-based CCUS deployment
- Variation in the final cost curves suggests that resolving uncertainty around reservoir response is necessary to understanding the commercial potential of shale-based storage, and to help identify lower cost targets for deployment
- This work has been used to help focus current and future experimental efforts to allow for refinement of resource estimates and operational costs. Specific areas of interest include:
 - Bulk incremental recovery response
 - Relative sorption of CO₂ and CH₄ on mineral and organic shale components
 - Compositional effects on swelling and permeability changes
 - Efficacy of fractures and diffusion processes for CO₂ and CH₄ transport
 - Storage mechanisms (sorption vs free-phase)

Case	Revenue (\$/tCO ₂)	Shale-based Projects (#)	Storage (MtCO ₂ /y)		
Low Gas Recovery	\$0.52	5	1		
Moderate Gas Recovery	\$11.44	44	20		
High Gas Recovery	\$18.46	303	600		

from CL Davidson, RT Dahowski, JJ Dooley, BP McGrail. 2014. Modelling the deployment of CO2 storage in U.S. gas-bearing shales. Energy Proceedia. Volume 63, pages 7272-7279.

Laboratory Studies: Probing Structural Changes with HXRD

d=17.8Å

Intensity

=14.9Å

Smectite

Illite

Woodford Shale

Quartz

Mg-Saturated

dried at 50°C

< 2.0 micron

Vacuum

Glycol Sat.

Southeast Anadarko Basin

Well: Lynn Wiley 1-A

8,850 ft, oil producing

Kaolinite.

Goal: Characterize shale stability (i.e., swelling, shrinking) in the presence of scCO₂ and water

- Woodford shale contains quartz, illite, kaolinite, and smectite
- No observable instability when in contact with anhydrous scCO₂
- Minor amount of swelling during exposure to scCO₂

Technique Reference : Schaef, H. T., E. S. Ilton, O. Qafoku, P. F. Martin, A. R. Felmy and K. M. Rosso (2012). "In situ XRD Study of Ca²⁺ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet scCO₂." IJGGC, 220-229.

Tracking Water Film Development and Mineral Stability with *In Situ* IR Spectroscopy

High-pressure in situ IR spectroscopy study of Woodford Shale and Kaolinite exposed to watersaturated $scCO_2$ (50 °C, 90 bar) for 24 hr

- Water film growth (OH stretch)
- Water film growth (HOH bend)
- Structural changes (expansion) with varying hydration (SiO and AIO stretching bands)

Water partitions between wet $scCO_2$ and shale, resulting in water films, structural changes, and possible changes in strength and porosity.

Technique Reference Thompson, C. J.; Loring, J. S.; Rosso, K. M.; Wang, Z. M., (2013). "Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO₂ by *In Situ* Infrared Spectroscopy." IJGGC, vol. 18, 246–255.

IR Spectroscopic Titrations of a Woodford Shale Sample: ATR-IR Data

- ATR-IR data provides molecular-level information about the water and CO₂ interactions with clays.
 - Chemometric analysis indicates H₂O molecules exist in multiple chemical environments as a function of total water concentration.
- Mineral stability as a function of dissolved H₂O
 - Precipitation and dissolution
 - Intermediate metastable phases

Technique Reference: Thompson, C. J., et al, (2014). "Automated high-pressure titration system with in situ Infrared spectroscopic detection." Review of Scientific Instruments vol 85, issue 4, 044102.

IR Spectroscopic Titrations of a Woodford Shale Sample in a CO₂-HCI Mixture

- Objective: Investigate Woodford shale reactivity in a CO₂-HCl-H₂O mixed gas system
- **Observations:**
 - Before H₂O addition, no observable differences compared to the pure CO₂ system
 - Initial H₂O uptake indicates a secondary phase (hydrated metal chloride)
 - Carbonate mineral begins dissolving
 - Higher water content dissolves metal chloride
- Implication: Tracking mineralfluid interactions at reservoir conditions provides insight into geochemical processes.

Surface Condensation of CO₂ on Minerals

Goal: Quantify unusual behavior of CO_2 sorption on important shale minerals

In situ quartz crystal microbalance technique used to determine CO₂ sorption on clay fraction of Woodford shale sample

- Absolute mass change
- High mass sensitivity for micro weighing in pressurized environments
- Use N₂ to establish surface roughness correction factors (i.e. N₂ ~0.2 mmol/g clay)
- Sorption was nearly linear on shale through the gaseous phase, but increased dramatically in the supercritical phase and peaked at ~90 Bar before desorbing.
- Molecular simulations describe adsorption as initially driven by CO₂ film formation on the surface, resulting in adsorption energies more favorable than the average CO₂-CO₂ interaction in bulk scCO₂.
- At higher pressures, the interactions in bulk CO₂ become more energetically favorable.

-0.6

0.0

0.1

0.2

0.3

CO₂ density (g/cm³)

0.4

0.5

Characterizing Mixed Gas Systems (H₂O/CO₂/CH₄)

Experimental water solubility data for mixed gas systems are scarce.

- Gas mixtures with compositions between pure methane and pure carbon dioxide were titrated with water at 50°C and 90 bar using an in situ IR spectroscopic titration capability.
- Each gas mixture shows a linear increase of dissolved water until saturation is reached, indicated by a plateau in the data (top graph).
- Overall, these titration results show an increase in water solubility that correlates with CO₂ concentrations (bottom graph).

Application: These data are necessary to understand competitive gas sorption processes and clay hydration and expansion mechanisms occurring in shales.

Distinguishing CO_2 Interactions in Model Clay Systems During Exposure to CO_2 and H_2O

- Interaction between CO₂ and interlayer Cs⁺ cations
 - HXRD shows a large basal spacing shift from 10.88Å (anhydrous) to 11.55Å in the presence of dry scCO₂
 - No expansion with dry N₂
 - IR spectroscopy reveals a blue shift of the asymmetrical CO shift of the CO₂ molecule
 - No measurable IR shifts with hydrated metal cations (i.e. Ca, Na, and Mg)
 - MAS-NMR indicates a large shift for the ¹³³Cs in the presence of scCO₂
- Theory predicts measureable
 CO₂ and cation interactions
 - Cryscenti and Cygan, 2013
 - Myshakin et al., 2013
 - Glezakou et al., 2014

Modeling Enhanced Recovery of Methane with CO₂

- STOMP-EOR simulates multiphase, multicomponent flow and transport of CO₂, methane and oil components coupled with geochemical reactions
- Simulations are used to investigate methane release via competitive CO₂ adsorption at the field scale by injecting CO₂ while producing CH₄.

Scenario: Hydraulic fracture stages in CO_2 injection and CH_4 production wells

Advection through hydraulic and natural fractures Diffusion and desorption from the shale matrix

Results: Methane recovery with and without simultaneous CO₂ injection

- With CO_2 injection, CH_4 production increased after 3 years
- Desorbed CH_4 increased from 5 to 31%
- Clay minerals and organics adsorbed similar amounts of CO2
- Stored 80 metric kilotons of CO₂

Accomplishments to Date

- Key in situ measurements conducted with field samples provide insights into gas sorption processes
- Laboratory studies coupled with atomistic simulations are essential to deriving fundamental geochemical information at reservoir conditions.
- Building a data base for reaction mechanisms and dominant geochemical processes for formulation and incorporation into reservoir simulators.
- Incorporating results from fundamental studies on competitive CH₄/CO₂ adsorption in shales into reservoir simulators to model at the field scale CH₄ production enhanced by injecting CO₂

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

		Detailed Schedule													
-	1		Detailed	d Schedule FY 2014											
				Oct	Nov	Dec	Jan	Feb	March		May	June	July	Aug	Sept
	Task Name														
#	Project Management	Start	Finish												
1	Manage Project	Oct-13	Sep-14		~~~~~	1	-		1	1	1			1	-
2	FY14 Q1 Report	Oct-13	Dec-13				+								
3	FY14 Q2 Report	Jan-14	Mar-14												
4	FY14 Q3 Report	Apr-14	Jun-14							Ī					
5	FY14 Q4 Report	Jul-14	Sep-14												
	Mila	actors Decorintian	Mileston e Date											-	
6	Milestone Description Submit journal article detailing experimental results of volumetric changes occurring in swelling clays when exposed to variable wet scCO2. The paper will focus on model clay minerals important to shales.		Dec-13			-									
7	Submit journal article providing a preliminary analysis of the economics of CO2 storage in shale reservoirs. This will include a specific discussion of the economics associated with storage of mixed gas streams.					•									
8	Submit journal article on gas adsorption on clay minerals. This manuscript will demonstrate several different in situ techniques that identify the location and amount of CO2 and CH4 on clays important to shales.		Mar-14						•						
9	absorption coefficients	flexible MOF framework, obtain sound using impedance tube measurements on synthesis and characterization of erials.	Mar-14						 •						
10	Submit journal article detailing molecular simulation results on model silicate minerals (i.e. plagioclase and pyroxene), in water saturated scCO2. This study can provide structural information and spectroscopic signatures of the species and correlate with experimental data from XRD and vibrational spectroscopies.		Jun-14									•			
11	Complete laboratory testing on silicate minerals in the H2O- scCO2 system and submit manuscript describing water film development occurring on silicates when exposed to variable wet scCO2. The study will utilize the in situ infrared flow through system to track the growth of these water films.		Jun-14									•			
12	Molecular simulations of sorption mechanisms between model silicate/layered minerals and water saturated scCO2. These simulations can provide connections between structure, spectroscopy and thermodynamic properties in these systems in conjunction to concurrent experimental work.		Sep-14												-
13	Submit journal article on filed scale simulations of EGR utilizing CO2 in depleted shale gas or shale oil reservoirs. The manuscript will incorporate laboratory derived adsorption data for important clay minerals.		Sep-14												-
Project: Capture and Sequestration Support Services		Task Quartly Report			Miles	tone <	•		Ph	ase =		-			

- Schaef, HT, JS Loring, V-A Glezakou, et al., (2015). Competitive Sorption of CO₂ and • H₂O in 2:1 Layer Phyllosilicates, <u>GCA</u>, Vol 161, pages 248-257.
- Davidson, CL, and BP McGrail, (2015). "Economic assessment of revenues associated • with enhanced recovery and CO₂ storage in gas-bearing shales", <u>IJGGC</u>, **submitted**.
- Lee, MS, BP McGrail, and VA Glezakou, (2014), "Microstructural Response of Variably ٠ Hydrated Ca-rich Montmorillonite to Supercritical CO₂", <u>ES&T</u>, Vol 48, 8612-8619.
- Loring, JS, et al., (2014). In situ study of CO₂ and H₂O partitioning between Na-• montmorillonite and variably wet supercritical carbon dioxide. Langmuir, 30 (21), pp 6120-6128.
- Schaef, HT, V-A Glezakou, et al, (2014). "Surface Condensation of CO₂ onto Kaolinite", • ES&T Letters,1(2): 142-145.
- Thompson, CJ, PF Martin, J Chen, P Benezeth, HT Schaef, KM Rosso, AR Felmy, and JS Loring, (2014). "Automated high-pressure titration system with in situ infrared spectroscopic detection", <u>Review of Scientific Instruments</u>, vol 85, issue 4, 044102.
- Glezakou, V-A., BP McGrail, HT Schaef (**2012**) "Molecular interactions of SO₂ with • carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", GCA, Vol 92, 265-274.
- Windisch Jr, CF, HT Schaef, PF Martin, AT Owen, and BP McGrail, (2012). "Following • ¹⁸O uptake in scCO₂-H₂O mixtures with Raman spectroscopy", Spectrochimica Acta Part A 94 186-191.

- Windisch, C. F., V. A. Glezakou, et al. (2012). "Raman spectrum of supercritical (CO₂)-O-٠ 18 and re-evaluation of the Fermi resonance." Physical Chemistry Chemical Physics **14**(8): 2560-2566.
- Tian, Jian, Praveen K. Thallapally and B Peter McGrail, (**2012**). "Porous organic ٠ molecular materials", CrystEngComm, (2012), 14 (6) 1909-1919.
- Liu, Jian, Praveen K. Thallapally, B. Peter McGrail, Daryl R. Brown and Jun Liu, (2012). ٠ "Progress in adsorption-based CO₂ capture by metal–organic frameworks", Chem. Soc. Rev., 41, 2308-2322.
- Glezakou, V.-A., R. Rousseau, L. X. Dang, and B. P. McGrail, (2010). "Structure, • Dynamics and Vibrational Spectrum of Supercritical CO₂/H₂O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation." *Phys Chem Chem Phys* **12**(31):8759-71.
- Thallapally, P. K., R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz. ٠ (2010). "Prussian Blue Analogues for CO₂ and So₂ Capture and Separation Applications." Inorg. Chem. 49(11):4909-4915.
- Windisch CF, Jr, PK Thallapally, and BP McGrail. (2010). "Competitive Adsorption Study ٠ of CO₂ and SO₂ on Co^{II}₃[Co^{III}(CN)₆]₂ Using DRIFTS."Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 77(1):287–291.
- Tian J, R. K. Motkuri, and P. K. Thallapally. (2010). "Generation of 2D and 3D (PtS, ٠ Adamantanoid) Nets with a Flexible Tetrahedral Building Block." Crystal Growth & Design **10**(9):3843-3846. 41

- Nune SK, PK Thallapally, and BP McGrail. (2010). "Metal Organic Gels (MOGs): A New Class of Sorbents for CO₂ Separation Applications." *Journal of Materials Chemistry* 20(36):7623-7625.
- Fernandez, CA, Nune, SK, Motkuri, RK, Thallapally, PK, Wang, CM, Liu, J, Exarhos, GJ, McGrail, BP, (**2010**). "Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures". *Langmuir*, 26 (24), 18591-18594.
- Motkuri, RK, Thallapally, PK, McGrail, BP, Ghorishi, SB, Dehydrated Prussian blues for CO₂ storage and separation applications. *Crystengcomm* (**2010**), 12 (12), 4003-4006.
- Glezakou, V. A., L. X. Dang, and B. P. McGrail. (2009). "Spontaneous Activation of CO₂ and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100)." *Journal of Physical Chemistry C* 113.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. (2009). "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696.