SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS

Project Number 1022403

Robert Dilmore
Office of R&D, Predictive Geosciences Division
U.S. DOE, National Energy Technology Laboratory
Benefit to the Program

• Carbon Storage Program Goals Addressed:
 – Support industry’s ability to predict CO$_2$ storage capacity in *(unconventional)* geologic formations to within ± 30 percent
 – Ensuring 99 percent storage permanence.

• Project Benefits:
 – Improve understanding of injection/storage performance of unconventional formations
 – Inform efficiency estimation for resource assessment
 – Insights feeding to seal characterization in integrated assessment of risk
Presentation Outline

• Project Overview
 – Introduction to research area
 – Project Description
• Progress to Date on Key Technical Issues
• Plans for Remaining Technical Issues
• Tie in with other work
• Project wrap-up
Project Overview:
Goals and Objectives

• Project Objectives
 – Evaluate matrix response to CO$_2$ exposure (sorption, swelling/shrinkage, geochemical interactions)
 – Characterize effective permeability and porosity of shale to CO$_2$
 – Experimental and simulation-based performance of CO$_2$ storage in/transport through shale with natural and engineered fractures
 – Reduced order characterization to improve resource estimation and quantitative risk assessment of geologic CO$_2$ storage
Technical Scope

Shales as Seals

Shales as Storage Reservoirs

Considering shale matrix and fracture dynamics

Building on previous related work evaluating potential for CO$_2$ storage and enhanced recovery in depleted shale gas formations.
Representing Fracture Networks

- Discrete Transverse Fracture Planes
- Crushed Zone Representation
- Semi-stochastic fracture Network

Discrete Fracture Modeling coupled with conventional reservoir simulation

Modified dual porosity, multiphase, compositional, multidimensional flow model

Semi-stochastic fracture network and flow modeling
Multiple influences contribute to shale response to CO₂ exposure.
Single and MultiPhase Flow from Micro to Reservoir Scale

MICRO-SCALE DATA COLLECTION (CT, SEM, ETC)

Flow in fractures and pore space

100 μm

RESERVOIR-SCALE MODELING

DATA CONVERSION AND COMPUTATIONAL FLUID DYNAMICS

Relative Permeability in a Fracture

Shale Density from CT Scan vs Well Log

Shales as Seals and Unconventional Reservoirs

• **Subtask 3.1 Understanding Permeability, Residual Saturation, and Porosity in Shale to Reduce Uncertainty in Long-Term CO$_2$ Storage and Efficiency**
 – Understanding permeability, porosity in unfractured shale matrix
 – Characterize the influence of shale swelling in response to CO$_2$ uptake on fracture conductivity in shales
 – Simulation of fractured shale formation response to CO$_2$ uptake

• **Subtask 3.2 Improve Characterization of Physical Changes in Shale with Exposure to CO$_2$**
 – Sorption and Characterizing Mechanisms of CO$_2$-Shale Interactions
 – Swelling and Shrinkage in Shale Matrix in Response to CO$_2$ Uptake
 – Mineralogical, Geochemical, and Pore Characteristics of Shales

• **Subtask 3.3 Field Activity to Obtain, Log, Ship, and Store Shale Core from South Dakota**
MEASURING EFFECTIVE PERMEABILITY, POROSITY, AND CAPILLARY ENTRY PRESSURE

Effective porosity and permeability of shale to CO$_2$/CH$_4$ over range of effective stress, capillary entry pressure, gas slippage, and strain measurements.

Subtask 3.1 Understanding Permeability, Residual Saturation, and Porosity in Shale to Reduce Uncertainty in Long-Term CO₂ Storage and Efficiency

- Steady-state flow measurement, research quality data
- Capable of reproducing in-situ net stress, and measuring gas flow under partial liquid saturation.
- Can also measure pore volume to gas, sorption isotherms and PV compressibility using N₂, CH₄ or CO₂
- Uses stable gas pressure as a reference for flow measurement
 - Temperature controlled
 - Stable to one part in 500,000
 - Target flow measurement is 10⁻⁶ standard cm³ per second
Shale matrix response to CO₂ exposure

Autolab 1500 – strain measurements with CO2 uptake
- Storage capacity of geologic samples
- Permeability of tight or moderately permeable samples
- Elastic constants via strain gages and linear variable differential transducers
- Sonic velocity and resistivity - unique “sonic/ resistive fingerprints” of the representative samples for remote “on-site” monitoring of subsurface fluid storage and motion.
Swelling of smectite clay

Observing bulk mechanical swelling of unconfined clays and shales (3.2)

Vac ~900psia CO$_2$ ~1500psia CO$_2$

Swelling of Texas montmorillonite (Hong et al.)
Isolating Fractures

- Fracture in shaly limestone
- Used for looking at changes in fracture topography and aperture under cyclic pressure
- Flow in fracture (DI H₂O)
- Utilize isolated fracture image to calculate apertures (bᵥ, bₑᶠᶠ & b₉)
 - Isolation via imageJ
 - Typically can use Otsu thresholding
 - In complex fractures use manual thresholding via selective histogram
Fracture Hysteresis Under Cyclic Pressure

Characterize fracture conductivity change in response to shale swelling with CO$_2$

Does CO$_2$ sorption lead to swelling in shales, reducing effective fracture aperture and fracture hydraulic conductivity?

Fractured shale response to CO$_2$ exposure

Lower Bakken shale
TOC >20 wt%

Shale core without confining pressure. Fractures still present. (Scale in millimeters.)
Permeability evolution calculations for the top portion of the fracture.

Sample courtesy of UND EERC; data generated by Moore, Crandall et al.
Modeling CO$_2$ Flow in Fractured Shale
Incorporating matrix swelling/shrinkage effects

FRACGEN stochastically generates fracture networks

NFFLOW models flow in discrete fracture networks

Images from: Sams, N. Overview of NFFLOW & FRACGEN. June 3, 2013
Dynamic permeability model to account for clay swelling during CO$_2$ invasion into shale reservoir

- based on the induced strain – effective horizontal stress relationship
- Applies a transmissivity modifier to the fracture segment transporting the CO$_2$
Subtask 3.3 South Dakota Core Acquisition and Logging

North American shale plays
(as of May 2011)

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI.
Updated: May 9, 2011
Subtask 3.3 South Dakota Core Acquisition and Logging

- MOU between DOE and South Dakota School Mines &Technology and South Dakota Geological Survey.

Treedam core (Pierre shale)
- Treedam core from South Dakota shipped from Rapid City, SD to Morgantown, WV (January)
- Logging using Multi-Scanner Core Logger (MSCL) complete, source rock analysis tests complete
- Preliminary tests in core-flooding unit

Presho core
- Completed coring in South Dakota
 - Pierre Shale section, and all of Niobrara Formation below it.
 - total of about 900 feet of core available for processing.
- Brought to NETL and scanning with MSCL
- SDGS is going to try to log the hole at Presho; MSCL data on the core will provide tie point back to the rock (or, If the field logging attempt fails, the MSCL scan will be the only petrophysical data)
- Thin section billets, source rock analysis chips, and a dozen or so core plugs will be available

Dr. Foster Sawyer of SDSM&T pointing to the Pierre-Niobrara contact at an outcrop location along the Missouri River south of I-90.
Relationship to Other NETL ORD Research

- CO₂ Storage Task 4: National-Scale Resource Estimation Methodology Development
- National Risk Assessment Partnership – NSealR fractured seal model
- NETL discrete fracture flow simulator – NFFLOW – shale storage and seal performance
Tie in: Storage Resource Assessment Methodology for Unconventional Formations

Prospective Storage Resource for CO$_2$ storage in shale at the national scale at the Exploration Phase.

- Develop National Scale Prospective Method
- Builds upon existing Volumetric Approach
- Based on highly-limited data availability

- Produce a universally-applicable method capable of being applied to all U.S. shale basins — even pre-production formations lacking detailed geophysical data — to provide prospective CO$_2$ resource at a national level.

DOE CO$_2$ Storage Classification

- Prospective Resources: Prospect, Lead, Play
- Prospective Storage Resources: Qualified Site(s), Selected Areas, Potential Sub-Regions
Tie in: NRAP Seal Leakage Characterization
Tool for estimating leakage through fractured seal (NSealIR)

- Estimate flux through a fractured or perforated seal
- Account for storage outside of primary target zone

- Uses inputs of pressure and saturation at the reservoir/seal interface
- Computes two-phase (brine and supercritical CO₂) flux and includes fluid thermal/pressure dependence
- Module to compute leakage through a Barrier (Seal) Layer
- Various levels of complexity to model barrier response
- Accounts for effective stress dependence of aperture
Accomplishments to Date

- Established workflow and demonstrated capability to measure change in fracture aperture and permeability in response to stress cycling and matrix volumetric change.
- Commissioned a high resolution steady state permeameter to collect research-quality permeability measurements in shale matrix.
- Initiated development of matrix shrinkage/swelling and fracture aperture dynamics model in NFFLOW/FRACGEN.
Synergy Opportunities

– Continued collaboration with South Dakota School Mines & Technology and South Dakota Geological Survey, RCSPs, industry collaborators

– Suggest interlab comparison as a means of cross-validation and method refinement
NETL Research Presentations and Posters

TUESDAY, AUGUST 18, 2015

- **2:15 PM** Resource Assessment - Angela Goodman
- **5:10 PM** Catalytic Conversion of CO$_2$ to Industrial Chemicals - Doug Kauffman
- **6:00 p.m.** Poster Session (CORE R&D, NRAP, and RCSPs)
 1. Dave Blaushild - Perfluorocarbon Tracer (PFT) Analysis to Support the South West Partnership,
 2. Liwei Zhang - Numerical simulation of pressure and CO2 saturation above the fractured seal as a result of CO2 injection: implications for monitoring network design
 3. NRAP, EDX, and NATCARB Grant Bromhal, Bob Dilmore, Kelly Rose, Maneesh Sharma

WEDNESDAY, AUGUST 19, 2015

- **1:15 PM** Monitoring the Extent of CO$_2$ Plume and Pressure Perturbation - Bill Harbert
- **2:05 PM** Reservoir and Seal Performance - Dustin Crandall
- **3:45 PM** Monitoring Groundwater Impacts - Christina Lopano
- **5:30 p.m.** Poster Session (SubTER, NRAP, and EFRCs)
 1. Kelly Rose - Evaluating Induced Seismicity with Geoscience Computing & Big Data – A multi-variate examination of the cause(s) of increasing induced seismicity events
 2. NRAP, EDX, and NATCARB Grant Bromhal, Bob Dilmore, Kelly Rose, Maneesh Sharma
 3. John Tudek- EFRC
 4. Sean Sanguinito NETL CO2 SCREEN)

THURSDAY, AUGUST 20, 2015

- **11:25 AM** Shales as Seals and Unconventional Reservoirs for CO$_2$– Robert Dilmore
Thanks for listening!

Shaly limestone Marcellus sample (F2HB) from Facies 2, with several dense bivalve fossils in its interior.

Robert Dilmore, Ph.D., PE
Research Engineer
NETL ORD, Predictive Geosciences Division
dilmore@netl.doe.gov
(412)386-5763