Central Appalachian Basin Unconventional (Coal/Organic Shale) Reservoir Small-Scale CO2 Injection Test

Project Number: DE-FE0006827

Nino Ripepi
Michael Karmis
Virginia Center for Coal and Energy Research at Virginia Tech

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the Infrastructure for CO2 Storage
August 21-23, 2012
Presentation Outline

- Project Objectives and Background
- Shale CO$_2$ Injection Test in Morgan County, Tennessee
- Coalbed Methane CO$_2$ Injection Test in Buchanan County, Virginia
- Conclusions
Project Overview: Goals and Objectives

✿ Objectives:
 - Inject up to 20,000 metric tons of CO2 into 3 vertical CBM wells over a one-year period in Central Appalachia
 - Perform a small (approximately 400-500 metric tons) Huff and Puff test in a horizontal shale gas well

✿ Goals
 - Test the storage potential of unmineable coal seams and shale reservoirs
 - Learn about adsorption and swelling behaviors (methane vs. CO2)
 - Test the potential for enhanced coalbed methane (ECBM) and enhanced gas (EGR) production and recovery

✿ Major tasks:
 - Phase I: site characterization, well coring, injection design
 - Phase II: site preparation, injection operations
 - Phase III: post-injection monitoring, data analysis, reservoir modeling
Research Partners

- Virginia Center for Coal and Energy Research (Virginia Tech) 1,2,3,4,5
- Cardno 2,3
- Gerald Hill, Ph.D. 1,4
- Southern States Energy Board 1,5
- Virginia Dept. of Mines, Minerals and Energy 3
- Geological Survey of Alabama 3
- Sandia Technologies 3
- Det Norske Veritas (DNV) 4
- Consol Energy (Research Group) 2,3

Industrial Partners

- Consol Energy (CNX Gas)
- Harrison-Wyatt, LLC
- Emory River, LLC
- Dominion Energy
- Alpha Natural Resources
- Flo-CO2

Collaborators

- Schlumberger
- Global Geophysical Services
- Oak Ridge National Laboratory
- University of Tennessee
- University of Virginia
- Southern Illinois University
- Oklahoma State University
Project Schedule

Phase I
(10/1/11 – 3/31/13)
- **Characterization**
 - Drill char. Well
 - Core sample analysis
 - Modeling
 - Baselines for monitoring
- **Injection design**
- **Monitoring design**
 - Well locations
 - Geophysical surveys
- **Go/no go 1:** permits, access (12 months)
- **Go/no go 2:** characterization (18 months)

Phase II
(4/1/13 – 9/30/15)
- **Site preparation**
 - Conversion of production wells
 - Drill monitor wells
 - Install additional monitor stations
- **CO₂ injection period**
 - (3/18/14 - 3/31/14) - Shale
 - (7/02/15 - 6/30/16) - CBM
- **Monitoring**
 - Atmosphere
 - Surface
 - Reservoir

Phase III
12 months (TBD)
- **Site closure**
 - Conversion of injection and monitor wells
 - Site restoration
- **Post-injection characterization**
 - Data analysis and interpretation
 - Post-injection monitoring
 - Reservoir modeling
 - Assessing enhanced recovery for commercialization

Ongoing: CO₂ Injections, Reservoir Modeling, Monitoring, Education/Outreach
Previous Experience in Huff and Puff Test in Russell County, Virginia (2009)

Production curve for huff-and-puff test well, Russell County, Virginia, 2009

- 1000-ton CO$_2$ injection
- Stacked coal reservoir
- Evidence of preferential adsorption: elevated N$_2$ and CH$_4$
- Enhanced CH$_4$ recovery at two offset wells, no CO$_2$ breakthrough
- 30% CO$_2$ in flowback over 5 years
- EUR of test well has increased by 48 percent
Shale CO₂ Injection Test (510 tons)
Morgan County, Tennessee

- Horizontal well in Chattanooga Shale formation, drilled in 2009
- Legacy producing gas well permitted under TDEC
- 510 tons for “huff and puff” injection test
- Injection period: March 18-31, 2014 (14 days)
- Shut-in period: March 31- July 29, 2014 (~4 months)
- Flowback period: July 29, 2014- present (~12 months)
- Current status: post-injection monitoring
Shale CO₂ Injection Test in Morgan County, Tennessee
Monitoring, Verification, and Accounting (MVA)

MVA Overview:

- Gas and water sampling
 - Commenced: 4/2013
 - Injection Well: HW-1003
 - 13 Offset Monitoring Wells
 - 3 Horizontal / 10 Vertical
 - 11 In-zone / 2 Out-of-zone

- Perfluorocarbon tracer study

- Surface water sampling

Monitor for:

- Injection Phase: % Composition, Tracer Arrival
- Soaking Phase: Pressure, % Composition
- Flowback Phase: Flowrate, % Composition, Tracers
Shale CO$_2$ Injection Test in Morgan County, Tennessee

Operations Overview
Shale CO₂ Injection Test in Morgan County, Tennessee
Operations Overview
Shale CO\(_2\) Injection Test in Morgan County, Tennessee

Injection Summary

- 510 tons CO\(_2\) injected
- Avg. Flow Rate: 40 tons/day
- Avg. Wellhead Temp: 50\(^\circ\) F
- Max Wellhead Pressure: ~500 psi (Gas Phase)
Shale CO₂ Injection Test in Morgan County, Tennessee
Monitoring, Verification, and Accounting (MVA)

Perfluorocarbon Tracers

- Sulfur Hexafluoride (SF₆)
 - 0.574 kg at 50-ton mark
 - Booster Pump and Air Compressor

- Perfluoromethylcyclopentane (PMCP)
 - 0.854 kg at 50-ton mark
 - Syringe Pump

- Perfluoromethylcyclohexane (PMCH)
 - 0.894 kg at 350-ton mark
 - Syringe Pump
Shale CO$_2$ Injection Test in Morgan County, Tennessee
Results to Date

Injection period:
- No increased concentration of CO$_2$ at offset wells *
- No detection of tracers at offset wells *

Shut-in period:
- Wellhead pressure leveled out at 260 psig for 3 months *
- No liquids downhole
- All gas phase in wellbore
Shale CO₂ Injection Test in Morgan County, Tennessee
Results to Date

Injection period:
- No increased concentration of CO₂ at offset wells *
- No detection of tracers at offset wells *

Shut-in period:
- Wellhead pressure leveled out at 260 psig for 3 months*
- No liquids downhole
- All gas phase

*Indications of closed system behavior
- Consistent with modeled predictions
- CO₂ confinement → storage option
Shale CO₂ Injection Test in Morgan County, Tennessee
Flowback Results

- EGR: An increase versus baseline production
- Correlated production of hydrocarbons and CO₂
- 34 percent of injected CO₂ produced to date (173 tons)
- Current CO₂ production rate of 0.22 tons/day
- $60 per ton of CO₂ Injected for EGR (including NGLs)
Shale CO$_2$ Injection Test in Morgan County, Tennessee
Results to Date

Production of heavy hydrocarbons elevated from baseline values:

- Role of pressure, viscosity and adsorption/desorption processes
- Enhanced recovery→ implications for other shale plays
CBM CO₂ Injection Test in Buchanan County, Virginia

- Oakwood coalbed methane field
- Stacked coal reservoir, 15-20 seams
- Tight shale and sandstone confining units
- 20,000-tonne CO₂ injection over one year in three legacy production wells
- CO₂ storage + Enhanced gas recovery (EGR)
- US EPA Class II UIC Permit
- Current status: Injection on-going.
CBM CO₂ Injection Test in Buchanan County, Virginia
Reservoir Modeling

Stratigraphic cross section through injection wells

Modeling Considerations:

- 15-20 coal seams in injection zone
- Average seam thickness of 1.0 feet
- Depth range: 900-2200 feet
- Variable lateral continuity
- Intermediate and overlying seals
- Dynamic reservoir properties (active production operations)
- Multi-phase flow
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Reservoir Modeling

18-layer reservoir model

CO$_2$ Injection simulations used to define Area of Review (AOR) for monitoring program

DD7

DD7A

DD8
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO₂ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO₂ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

MVA Approach

Borehole-scale technologies:
- Pressure/Temperature
- Gas/H₂O composition
- Tracers/Isotopes
- Formation logging

Technologies deployed over large areal extents:
- Microseismic/TFI
- Surface deformation measurement (GPS + InSAR)

- Combination of technologies will provide data sets with overlapping spatial and temporal scales.
 - Data will help distinguish signals from CO₂ operations vs. active CBM operations
 - Data sets will cross validate each other

- Selected technologies to address/overcome challenges of reservoir geometry and terrain
Injection Skid for 3 wells w/ Coriolis Flowmeters, Valves and Radio/Cell Communication
SCADA (supervisory control and data acquisition) system

- Real-time graphing
- Alarms and Valve control:
 - flowrate, injection pressure, casing pressure
 - 30 second communication via radio
Real-time Injection and Monitoring Data
1,470 metric tons injected to date (1,617 tons)

<table>
<thead>
<tr>
<th>Date</th>
<th>DD7 (metric tons)</th>
<th>DD7A (metric tons)</th>
<th>DD8 (metric tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2/2015</td>
<td>409</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7/10/2015</td>
<td>409</td>
<td>-</td>
<td>470</td>
</tr>
<tr>
<td>7/18/2015</td>
<td>409</td>
<td>-</td>
<td>470</td>
</tr>
<tr>
<td>7/26/2015</td>
<td>409</td>
<td>-</td>
<td>470</td>
</tr>
<tr>
<td>8/3/2015</td>
<td>589</td>
<td>-</td>
<td>470</td>
</tr>
<tr>
<td>8/11/2015</td>
<td>589</td>
<td>-</td>
<td>470</td>
</tr>
<tr>
<td>8/19/2015</td>
<td>589</td>
<td>-</td>
<td>470</td>
</tr>
</tbody>
</table>

DD7A – 589 metric tons
DD7 – 409 metric tons
DD8 – 470 metric tons
DD7 Injection Rate and WellHead Pressure

- DD7 Injection Pressure (psig)
- DD7 (metric tons / day)
Injection Well Liquid Level

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Depth To liquid level (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/9/2015</td>
<td>10:50:34</td>
<td>1778.78</td>
</tr>
<tr>
<td>4/9/2015</td>
<td>10:56:53</td>
<td>1778.05</td>
</tr>
<tr>
<td>4/9/2015</td>
<td>11:37:27</td>
<td>1778.02</td>
</tr>
<tr>
<td>4/9/2015</td>
<td>12:46:42</td>
<td>1846.43</td>
</tr>
<tr>
<td>4/29/2015</td>
<td>15:18:56</td>
<td>1229.35</td>
</tr>
<tr>
<td>6/2/2015</td>
<td>8:29:04</td>
<td>1485.11</td>
</tr>
<tr>
<td>7/12/2015</td>
<td>12:25:24</td>
<td>1492.28</td>
</tr>
<tr>
<td>7/12/2015</td>
<td>12:26:20</td>
<td>1493.22</td>
</tr>
<tr>
<td>7/15/2015</td>
<td>14:49:21</td>
<td>1482.11</td>
</tr>
<tr>
<td>7/22/2015</td>
<td>7:47:58</td>
<td>1477.9</td>
</tr>
<tr>
<td>7/28/2015</td>
<td>10:54:21</td>
<td>1481.36</td>
</tr>
<tr>
<td>8/4/2015</td>
<td>16:56:49</td>
<td>1511.35</td>
</tr>
</tbody>
</table>
Accomplishments to Date

- Completed Geologic Characterization for CBM Test Site and Shale Test Site
- Site Selection of 3 CBM Wells in VA for Injection
- Site Selection of 1 Horizontal Shale Well in TN for Injection
- Access Agreements for CBM Test completed
- Access Agreements for Shale Test completed
- Conducted Risk Workshop and developed Risk Register
- Performed detailed reservoir modeling analysis and assessment for CBM and Shale Tests
- Developed Drilling, Monitoring and Injection Plans
- Initiated Public Outreach Plan
- Shale Test Injection Complete – Flowback Underway
- Coring/Drilling at CBM Test Site complete
- CBM Test Injection Underway
Synergistic Activities

- Reservoir Modeling
- Core Analysis
- Field Projects
- Tracer Studies
- Gas and Water Sampling
Summary

• Shale Test Injection successful
 – Flowback showed EGR and specifically NGLs

• CBM Test Injection underway
 – Multiple wells allow for varied injection rates and pressures as well as fall-off testing
 – No breakthrough at monitoring or offset wells
Appendix
Benefit to the Program

- Develop technologies that will support industries’ ability to predict CO2 storage capacity in geologic formations to within ±30 percent.
- Conduct field tests through 2030 to support the development of BPMs for site selection, characterization, site operations, and closure practices.
- The research project is testing the potential for enhanced coalbed methane (ECBM) and enhanced gas (EGR) production and recovery.
- The technology, when successfully demonstrated, will provide guidance for commercialization applications of ECBM and EGR.
<table>
<thead>
<tr>
<th>Task Name</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0--Project Management and Planning</td>
<td>$741,678</td>
</tr>
<tr>
<td>Task 2.0--Site Selection and Access Agreements</td>
<td>$691,528</td>
</tr>
<tr>
<td>2.1--Initial Site Screening and Selection</td>
<td></td>
</tr>
<tr>
<td>2.2--Leases, Agreements, Permitting, etc.</td>
<td></td>
</tr>
<tr>
<td>2.3--Outreach and Education</td>
<td></td>
</tr>
<tr>
<td>Task 3.0--Site Characterization, Modeling, and Monitoring</td>
<td>$3,217,450</td>
</tr>
<tr>
<td>3.1--Detailed Geologic Characterization</td>
<td></td>
</tr>
<tr>
<td>3.2--Reservoir Modeling</td>
<td></td>
</tr>
<tr>
<td>3.3--Exploratory Characterization and Monitoring Wells</td>
<td></td>
</tr>
<tr>
<td>3.4--Monitoring, Verification and Accounting</td>
<td></td>
</tr>
<tr>
<td>Task 4.0--Risk Analysis</td>
<td>$216,095</td>
</tr>
<tr>
<td>4.1--Develop Risk Register</td>
<td></td>
</tr>
<tr>
<td>4.2--Develop Risk Assessment and Mitigation Plan</td>
<td></td>
</tr>
<tr>
<td>4.3--Management of Risks</td>
<td></td>
</tr>
<tr>
<td>4.4--Update and Reassess Risk Plan</td>
<td></td>
</tr>
<tr>
<td>Task 5.0--Injection Design and Planning</td>
<td>$558,891</td>
</tr>
<tr>
<td>5.1--Test Site Operations</td>
<td></td>
</tr>
<tr>
<td>5.2--Design of Monitoring Wells</td>
<td></td>
</tr>
<tr>
<td>5.3--Design of Injection Wells</td>
<td></td>
</tr>
<tr>
<td>Task 6.0--Pre-injection Site Preparation</td>
<td>$2,973,479</td>
</tr>
<tr>
<td>6.1--Conversion of Production Wells</td>
<td></td>
</tr>
<tr>
<td>6.2--Conversion of Characterization/Monitoring Wells</td>
<td></td>
</tr>
<tr>
<td>6.3--Construction of Facilities</td>
<td></td>
</tr>
<tr>
<td>6.4--Monitoring</td>
<td></td>
</tr>
<tr>
<td>Task 7.0--Injection Operations</td>
<td>$4,391,325</td>
</tr>
<tr>
<td>7.1--Injection Tests</td>
<td></td>
</tr>
<tr>
<td>7.2--Reservoir Monitoring</td>
<td></td>
</tr>
<tr>
<td>7.3--Surface Monitoring</td>
<td></td>
</tr>
<tr>
<td>7.4--Reservoir Modeling and Verification</td>
<td></td>
</tr>
<tr>
<td>Task 8.0--Post Injection Monitoring and Analysis</td>
<td>$816,057</td>
</tr>
<tr>
<td>8.1--Post-injection Monitoring</td>
<td></td>
</tr>
<tr>
<td>8.2--Interpretation and Assessment</td>
<td></td>
</tr>
<tr>
<td>Task 9.0--Closeout/Reporting</td>
<td>$767,588</td>
</tr>
<tr>
<td>9.1--Closure of Site(s)</td>
<td></td>
</tr>
<tr>
<td>9.2--Reporting</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

- Gilliland, E., Ripepi N., Schafrik, S., Schlosser, C., Amante, J., Louk, A.K., Diminick, E., Keim, S., Keles, C. and M. Karmis, Monitoring design and data management for a multi-well CO2 storage/enhanced coalbed methane test in a stacked coal reservoir, Buchanan County, Virginia, USA, Future Mining 2015, Sydney, Australia, November 4-6, 2015,

Bibliography

