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Mechanism for pH Triggered Polymer Gel

 Injection of solid polymer microgel dispersion in low pH condition

 Diffusion of OH- out of cement to form a thin gel layer on cement
surface, allows rapid propagation of the low-viscosity solid microgel

« Subsequent shut-in allows formation of gel with high yield-stress
throughout the fracture, blocking any leakage flow
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Benefit to the Program

Program goals: Develop and validate technologies to ensure
99% storage permanence

Project benefits statement: Existing wellbores with
inadequate or compromised zonal isolation can allow leakage of brine
or CO, from the storage formation into shallow fresh-water resources or
to surface. We test a novel pH-triggered polymer gelant which improves
existing technologies:

(i) placement of the gelant is straightforward, even into narrow gaps
which allow leakage but will not admit a cement slurry,

(ii) gelant is converted to gel only after contacting the cement and
that contains leakage path. Benefit to storage community would be
new technology that would work best where current technology has
greatest difficulty.



Project Overview: determine performance of
pH-triggered polymer gelant as sealant

Project Goals Success Criteria
1. Determine optimal gelant 1. Validated model of gel rheology
composition/rheology including at elevated temperature
2. Test capability of optimal 2. Capability of pH-triggered gels
formulation in fractured to stop brine leaks at constant
cement cores to withstand pressure gradient

pressure gradient applied
with acidic brine and CO,

3. Develop reactive transport 3. Validated model of acid-
models consuming reactions and their rates

4. Develop plan for deploying

material in field 4. Tested plan in bench-scale field
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1. Gelant Rheology
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1. Rheology of gelant/gel (Carbopol 934)

10°

\_/102

10’

C ® 05wt% * 2.0wt.%
- & 1.0wt% A 25wt%
- 4 1.5wt% = 3.0wt%
K Herschel-Bulkley fit
-__
——
- <
- - @
i Herschel-Bulkely Model O =0 + K}&
_n_umd_a_umul_u_mml_n_uuud_u_umd_a_umw‘

10° 10 107 107 10" 10° 10’ 10°?

v (1/s)



1. Yield stress function of pH and concentration
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1. Rheology of gelant/gel (Carbopol 934)
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2. Injecting pH Triggered Polymer Gelant through Fractured
Cement

Key performance measures:

« Placing low viscosity reactive polymer into the entire length of narrow leakage paths, so
that flow blocking gel is formed after shut in

» Ability of gelled polymer to withstand brine/ CO, imposed pressure gradient
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2. Holdback Pressure Gradient
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2. Formation of white syneresis detrimental

In addition to OH-, Ca** ion also diffuses
out from cement, which causes the
contraction of swollen gel network. Water
expelled from the contracted gel
sometimes forms water channel
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2. Modified process to remedy complication

Fracture is pre-flushed with a small bank of chelating agent, such as HCI,
EDTA or Na triphosphate, to remove Ca** from a thin layer of cement

Subsequent polymer gelant injection allows formation of a layer of the yield-
stress gel on the fracture surface, preventing the formation of the Ca-polymer
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2. Coreflood Experiments with NasP301¢ Pre-treatment

Max
Pre- Polymer Pressure
Core Type Experiment L SEIUTTIC treatment Shut-in holdback HOI.d SEIES
(mm) . . . Fluid
Time time :
6CF-36 0.436 24 hours 2 weeks pH4 brine
Cement-
cement 6CF-39 0.463 10 minutes 2 weeks pH4 brine
24 h DI
6FP-34 0.313 24 hours ours water
10 weeks DI water
10FP-35 0.218 - 1 week DI water
10FP-36 0.255 24 hours 24 hours DI water
10FP-37 0.209 12 hours 1 week DI water
24 h DI wat
10FP-38 0.228 6 hours ours warer
5 weeks DI water
Cement- 10FP-38P 0.277 6 hours 5 weeks DI water
plastic
10FP-39V 0.274 10 minutes 1 week DI water
10FP-S1 0.547 10 minutes 1 week pH4 brine
10FP-L2* 0.525 10 minutes 1 hour pH4 brine
10FP-M2* 0.530 10 minutes 1 hour DI water
Fractured
Cementinise cmico 0.423 10 minutes 24 hours cO,
Hassler

Coreholder

Average holdback
~ 60 psi/ft



2. Gel strength function of gel shut-in
times (Na;P;0,, Pre-treatment)
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Residual NasP;0,q slowly reacts with polymer gel forming bubbles

« Initially lowers yield stress, but maintains desirable gel strength

« As air/gas in bubbles gradually dries up gel inside the fracture,
yield stress gradually increases.




3. 2-D gelant transport modeling in model fracture
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C: dimensionless proton concentration

C,: initial polymer proton concentration, C, = 1
C,: cement wall proton concentration, C, << 1
D: diffusivity of H* in water

C,: microgel concentration in polymer solution, Cg: swollen gel concentration,
Dgei: swollen gel diffusivity, A: ablation rate constant, t,,: wall shear stress at z=H
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3. Simulation model and results
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3-D gelant transport modeling in “real” fracture

Due to areal variation of
fracture gap width, formation of S
gel layer and Ca-polymer layer
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4. Bench Test for Field Preparation
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4. Field Application Analogy
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Accomplishments to Date

Evaluated rheology (non-Newtonian viscosity of gelant &
yield stress of gel) for family of gelants for wide range of
conditions

Developed apparatus for visual inspection of gelant
placement process, gel transition and occasional
development of breakdown pathway

Found cause for the breakdown pathway development,
and developed a remedy of injecting a small bank of
chelating agent pre-flush before gelant injection

Developed mathematical model for gelant placement
Successfully bench-tested a simple field plan
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Synergy Opportunities

1. Use of Carbopol gel in fracture
propagation experiments in DOE
EFRC (CFSES)

piezoelectric sensors
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Summary

— Key Findings
« pH-triggered polymer gelants (Carbopol) useful for stopping leaks along
wellbore/rock interface

« Chelating agent pre-flush allows the gelant propagation through fracture,
before the Ca-polymer formation. Sodium Triphosphate > EDTA

— Lessons Learned

* Flow cell experiments show that hold back pressure is dependent on use of
chelating agent and time

« Transport modeling should include pH and concentration dependent
rheology, viscosity-dependent diffusion, and 3D; diffusion of OH- and Ca**

and subsequent formation of swollen gel and ca-polymer

— Future Work
« Quantitative 3D modeling to predict long-term hold back
« Development of a field plan in both shallow and deep wells
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Gantt Chart
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Mile-
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YEAR 1

YEAR 2
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Interdependencies

Project management across all
tasks

2.1

1A

Develop protocol for testing
capability of gel to stop leaks

2.2

1B

2.3

Use protocol from Task 2.1 to
test gels for range of
conditions relevant to geologic
storage

3.1

Develop reactive transport
model that accounts for
effluent pH measurements in
Tasks 2.2 and 2.3

3.2

1.C

Apply model from Task 3.1 to
validate reaction rate
constants against data from
Tasks 2.2 and 2.3

4.1

Develop model gelant
rheology and gel yield stress

4.2

1.D

Apply model from Task 4.1 to
measurements from Tasks 2.2
and 2.3

5.1

2.A

Develop model that integrates
components from Tasks 3 and
4 and data from Task 2

5.2

Apply model from Task 5.1

2.B

Use optimal gelant
formulations found in Task 2
to test resistance to CO2
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3-D gelant transport modeling in “real” fracture

* Due to areal variation of fracture gap width, formation of gel layer and
Ca-polymer layer is not uniform

* Formation of Ca-polymer layer from contraction
of swollen gel generates low-viscosity water channel

Length = 6 inches

Implementation of Model Features in CFD Software

» Gelant and gel rheology

» Kinetics of deposition of swollen microgel
* Reactions:

(1) Ca** and polymer and

(2) Ca** and chelating agent



Technical Status

« Gelant and gel rheology measurement and modeling
(Mohammad Shafiei)

— Quantification of non-Newtonian viscosity of gelant, and yield stress of
gel, in terms of pH, polymer concentration, shear rate, salinity, Ca**
concentration, and temperature

* Gelant placement in cement fracture experiments (James
Patterson/ Jostine Ho)

— Characterization of (i) pressure gradient and effluent pH change during
gelant injection, and (ii) pressure build-up after shut-in (due to yield stress
of gel), in terms of fracture gap and length, injection rate, salinity, polymer
concentration, and temperature

« Gelant placement reactive transport modeling (Jostine
Ho/Shayan Tavassoli)
— 2-D modeling of gelant transport and gel layer formation in model fracture

— 3-D modeling of gelant transport and the competing formation of gel layer
and Ca-polymer layer in “real” fracture 28



2. Formation of White Syneresis Detrimental

Contraction of swollen gel
network by Ca™* ion
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2-D modeling of competing formation of
gel layer and Ca-polymer layer

« After swollen gel layer formation (due to OH- diffusion), slow diffusion of Ca**
causes contraction of gel network with expulsion of water/formation of Ca-
polymer layer

« Removal of Ca** from the near-surface zone of cement, by the chelating agent

pre-flush, allows a sufficient formation of swollen gel layer, delaying the Ca**
diffusion

Model Formulation o o o
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Simulation Model —
Polymer Concentration
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2. Modified process to remedy complication

2 hour pre-soak 24 hour pre-soak



