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Benefit to the Program

* Program goals being addressed:

— Develop and validate methods for detecting and
monitoring CO, to ensure permanence and
containment efficiency.

— Develop Software and Best Practice Manuals for site
characterization, site management and risk analysis.

* Project benefits: Support decision making for
best design and control of CO, injection and
storage operations, by developing faster and
more reliable data utilization algorithms.



Project Overview:
Goals and Objectives

Develop methods

* For characterization and monitoring of
injected CO,:
— Using data with significant noise
— Using jointly multiple data types

* To quantify uncertainty and risk

« That can handle LARGE systems (>10°
unknowns)



Project Overview:
Goals and Objectives

Develop, test, and apply advanced algorithms for
estimation of subsurface properties and CO, transport
for large scale systems with uncertainty estimates.
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Technical Status

 Method development

— Fast characterization and dynamic inversion by
geostatistical and Kalman Filter methods

* Testing with synthetic and real data

— Large scale, three dimensional heterogeneous
— Frio-| site, In Salah site

« Software & best-practice manual

development

 FKF-TOUGH
 DAsoftware



Technical Status

 Method development

— Fast characterization and dynamic inversion by
geostatistical and Kalman Filter methods



Technical Status
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Scaling

S. Ambikasaran, J. Y. Li, P. K. Kitanidis and E. F. Darve, 2013 J. Comp. Geosc. 17:913-927
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« Harnessing the hierarchical structure of matrices
used to describe geospatial correlation, we can
dramatically reduce the cost of matrix operations
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Principal Component Geostatistical
Approach (PCGA)
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Hierarchical Kalman Filter (HIKF)

Li, J. Y., S. Ambikasaran, E. F. Darve, and P. K. Kitanidis, 2014 Water Resour. Res., 50

« Hierarchical Kalman Filter for quasi-continuous
data assimilation

CO, monitoring with
seismic travel times
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Hierarchical Kalman Filter (HIKF)

Runtime (sec)

« Reduction of computation cost from O(m?) to O(m)

m: # unknowns

Log-log plot of runtime
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Compressed State Kalman Filter
(CSKF)

» Factorization of the covariance matrix using a fixed basis
leads to smaller matrices and faster computations, with
minimal loss of accuracy of the inversion algorithm.

CO, monitoring example
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Spectral Kalman Filter (SpecKF)

Relative error

« Constructing and updating the full covariance matrices is
avoided by an approximation of the forward model

operator.

Negligible difference from (full) Computation time of SpecKF
Kalman Filter in estimation iIncreases slowly with problem size
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Technical Status

» Testing with synthetic and real data

— Large scale, three dimensional heterogeneous
— Frio-| site, In Salah site
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Synthetic domain

Objective: Use various types of field data to
characterize a strongly heterogeneous domain
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CSKF: Pumping data

True log-permeabilities Estimated log-permeabilities
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CSKF: Pumping and thermal tracer data

True log-permeabilities Estimated log-permeabilities
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Application to real datasets

« Data assimilation algorithms make up for lack of
knowledge of processes and properties by
continuously updating and correcting our prior
models with data as they become available.

* Many challenges:
— Diverse and sparse datasets
— Poor prior knowledge
— Even larger number of unknowns
— Forward model simulation challenges

— Tendency to oversimplify and undersimulate
19



Application to real datasets

 Frio-| site
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Frio-| site

Two-well setup: injection and pumping well

Datasets
Prior to CO2 injection During CO2 injection
Pumping tests CO2 saturation vertical profiles
Thermal tracer tests Temperature vertical profiles
Conservative tracer tests Pressure

* Quantitative geophysical data indicate two major preferential
pathways that CO, followed upon injection.

— One objective: confirm preferential flow pathways and refine
prior geological model.
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In Salah site

To use high resolution INSAR data for surface deformation to
calibrate geomechanical model and identify heterogeneity.

Injection over time

S00m

mudsiones

950

 Fewer data, larger scale:
— 27 km x 43 km, 3 horizontal wells

« Complex physical problem
— Fractured storage system
« Challenging the limits of forward and inverse modeling



Technical Status

Software & best-practice manual development
« FKF-TOUGH
* DAsoftware
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Software development

 DAsoftware
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Accomplishments to Date

1.

Developed and tested multiple techniques for fast and
reliable joint inversion of large datasets for CO2
monitoring and site characterization

Compared developed techniques with state-of-the-art
alternatives and demonstrated similar or superior
performance in terms of accuracy and cost.

Demonstrated suitability of developed approaches for
realistic, large scale cases using synthetic datasets.

Started the development of user-friendly software
package that will become available to the public for
further use and extension.
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Synergy Opportunities

Collaboration with projects in sensor technologies
and geophysics will have a synergistic effect with
this work. E.g.:

— Daley’s (LBNL) advance monitoring
technologies

— Delgado-Alonso’s (Intelligent Optical Systems)
CO2 minoring network

— Dobler’s (Exelis) laser imaging, and

— Pashin’s (Oklahoma SU) surface and airborn
monitoring techology
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Summary

» Faster data-assimilation algorithms make it
possible to answer crucial questions about CCS
design and operation.

* We have developed inversion algorithms that
provide big computational speed-up and storage
cost savings.

* Project products will include guidance documents
and user-friendly inversion packages that can be
used to optimize CO, injection design and
operation at real sites. 27



Appendix

— These slides will not be discussed during the
presentation, but are mandatory
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Organization Chart

‘ Pl: Peter Kitanidis \

Task 2: Stochastic Inversion
Development

Task Lead: Peter Kitanidis'
Participants: Eric Darve', Judith Li,
Hojat Ghorbanidehno', Amalia
Kokkinaki

Task 3: Efficient Algorithms and
GPUs

Task Lead: Eric Darve'
Participant: Hojat Ghorbanidehno?,
Ruoxi Wang'

Task 1: Project Management and
Planning

Task Lead: Peter Kitanidis'
Participants: Eric Darve! & Quanlin
Zhou?

Stanford University, 2Lawrence Berkeley National Laboratory

Tasks 4 & 5: Methodology Testing/
Application

Task Lead: Quanlin Zhou? & Peter
Kitanidis'

Participants: Xiaoyi Liu?, Judith Li', Amalia
Kokkinaki', Jens Birkholzer?
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Project team

At Lawrence Berkeley National
Laboratory:

Jens Birkholzer, collaborates on mathematical modeling
ISsues

Quanlin Zhou, collaborates on mathematical modeling
ISsues

Keni Zhang, collaborates on high-performance
computing and the use of TOUGHZ2 model (left in 2015)

Xiaoyi Liu, collaborates on both forward modeling and
inversion (left in May 2014)
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Project team

At Stanford University:

Peter K. Kitanidis

Eric F. Darve

Judith Li, PhD candidate in Civil and Environmental
Engineering (CEE)

Hojat Ghorbanidehno, PhD candidate in Mechanical
Engineering (ME)

Ruoxi Wang , PhD candidate in Computational and
Mathematical Engineering (CME)

Amalia Kokkinaki, post-doc in CEE

Sivaram Ambikasaran, PhD Computational and
Mathematical Engineering (graduated in Aug 2013)
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Project Workplan/SOPO Project Tasks

 Task 1. Project Management and Planning
— Subtask 1.1: Project Management Plan
— Subtask 1.2: Project Planning and Reporting

 Task 2.0: Development of Stochastic Inversion Methods
— Subtask 2.1: Development of Fast Bayesian Inverse Methods

— Subtask 2.2: Development of Efficient Joint Inversion Methods for
Dynamic Monitoring

— Subtask 2.3: Fusion of Results from Separate Inversion of Multiple
Different Data

« Task 3: Development of Efficient Inversion Algorithms

— Subtask 3.1: Algorithms for Solving Large Dense Linear Systems
(FDSPACK + Low Rank Approximations)

— Subtask 3.2: High-Performance Implementation using GPUs in
TOUGH+CO2



Project Workplan/SOPO Project Tasks

« Task 4.0: Testing of the Joint Inversion Methodology for a
Synthetic Geologic Carbon Storage Example
— Subtask 4.1: Generation of the “True” Fields of Porosity and
Permeability of the Heterogeneous Storage Formation

— Subtask 4.2: Generation of the Simulated Data of Hydro-Tracer-
Thermal Tests and CO, Injection Test

» Subtask 4.2.1: Creation of the Simulated Data for Hydro-Tracer-Thermal Tests
Prior to CO, Injection
» Subtask 4.2.2: Creation of the Simulated Data for CO, Injection Test

— Subtask 4.3: Joint Inversion of the Simulated Data

« Task 5.0: Application of the Methodology to Test Sites
— Subtask 5.1 — Application to Test Site One
— Subtask 5.2 — Application to Test Site Two



Project Deliverables

1. Task 1.0 — Project Management Plan

2. Task 2.0 — Developed inversion algorithms and their demonstration
cases, with the final joint inversion tool system, as documented in a quick-
look report.

3. Task 3.0 — Developed fast large linear system solvers with different
computational algorithms as documented in a quick-look report.

4. Task 4.0 — Test results of the joint inversion methodology for a
synthetic Geologic Carbon Storage example as documented in a quick-
look report.

5. Task 5.0 — Test results of application of the methodology to field test
sites as documented in a quick-look report.

6. Task 5.0 — Validation of developed computational tools performance
and cost as documented in quick-look report.

7. Project Data — Data generated as a result of this project shall be
submitted to NETL for inclusion in the NETL Energy Data eXchange
(EDX), https://edx.netl.doe.gov/.
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