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Benefit to the Program

UUUUUUUUUU

* Goal: Develop new capabilities for carbon
sequestration modeling in fractured reservoirs
through improvements in the representation of
fracture-matrix flow interactions.

« Support industry’s ability to predict CO, storage
capacity in geologic formations to within £30
percent.



Project Objectives

Develop new model for interactions of
fracture and matrix flow

Incorporate new model into reservoir-scale
simulators

Conduct sensitivity analyses of trapping
efficiency and storage capacity using new

model
Apply new model to In Salah site



Project Overview

Fractured reservoirs
Dual-porosity models
Transfer functions
Hybrid model

Example
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“mm  Fractured reservoirs
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Carbonate rocks

« 60% of world’s remaining oil

« 25% of world’s groundwater

» Possibly used for storage of CO,

Shales and mud-rocks
« Unconventional oil and gas
» Leakage through seals and barriers

Crystalline and basement rocks
 Enhanced geothermal systems
« Storage of nuclear waste
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== Modeling challenges
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~100 x 100 x 5 m
~ 13,000 t fluid

~ 100,000 t rock
Uniform properties
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Dual-porosity models

Naturally fractured rock

Conceptual model

Fracture grid (permeable)

/-4 -/
/ -/ /-

Rock matrix grid (stagnant)
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Dual-porosity: ingredients

1. Fracture permeability 2. Matrix properties 3. Transfer function
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Recovery of oil (%)

Processes that induce fracture-matrix transfer:
* Forced displacement

* Buoyancy driven displacement
« Spontaneous imbibition
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Counter-current
spontaneous imbibition

* Driven by capillary
forces only

» Wetting fluid
displaces the
resident non-wetting

fluid

1 _Snr-.

Distance

Schmid & Geiger (2012, 2013)
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Experimental results

« Experimental values
collapse when time is Y o0 ,
scaled by amount imbibed 9 |2 Frou D et

o Bourbiaux & Kalaydjian

and effective pore space O R | ey

Recovery %

* Analytic solution for early
time
* First-order rate model

t,=p*t

Schmid & Geiger (2012, 2013)
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Solution types

Early time behaves
according to self-similar
capillary diffusion
First-order model
captures late behavior

Combine the two
solutions to form hybrid
model
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s First Order Transfer Model | §
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~ Bl Factors that determine
transition time

* Viscosities of fluids

- Capillary pressure Capillary diffusion coefficient
e Relative permeabi"ties Diffusion Coefficient Curves

Relevant parameters for CO,
storage (coloured curves)
show substantially different
shape in normalized diffusion
coefficients.
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End of early time regime

« Early time is dominated by

. lllustration of cumulative diffusion
counter-current capillary

diffusion 1
« Cumulative diffusion as a 09
measure of the onset to late 038
time recovery 0.7
« Transfer at t5, from early- ~ %
i i : R05
time to late-time behaviour 3

when 60% of cumulative
diffusion has occurred
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@ lllustration of hybrid transfer
solutions

c n . .
¢ Pred ICted t60 from d IfoSIOn 120 | = = = True Solution (Simulation) :
L T ) RO Early Time (Analytical Solution)| :
CoeffICIent = Hybrid Solution
—“—ir;u

-

o

o
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» Perfect match for early time
through analytical solution

o
o
T

« Approximate match at late time
through first-order transfer

Imbibed Wetting Phase [%]
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Dual-Porosity Simulation
Example Setup

Fully resolved simulation setup

N _

Dual-porosity setup
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@ Dual-Porosity Simulation
Example Results

Fully resolved simulation Dual-porosity simulation

Wetting Phase Saturation Wetting Phase Saturation Front in the Fracture

— 2D Simulation

10.72 0.8r —e— Dual-Porosity with Hybrid Function

—— Dual-Porosity with First Order Transfer Function
—— 1D Flow in Fracture (No DP model)

10.7 0751
10.68 07}
0.66 % ges]
0.64 .61
0.62 0.5}
0.6 % 05 : 15 2 25
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Conclusions

« Hybrid transfer functions are able to capture
spontaneous imbibition
— Exactly for early times
— Approximately for late times

* Transition time can be predicted based on
fluid and rock properties
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“mm Accomplishments to Date
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* Development of hybrid transfer function for dual-
porosity model of spontaneous imbibition

« Development of hybrid discrete-continuum model
that better represents flow in the rock matrix

* Conversion of In Salah wellhead pressures and
temperatures to downhole values

* Continued investigation of applying a vertically-
iIntegrated approach to a dual-porosity model

20



Synergy Opportunities

* The modeling approaches developed in
this project should be useful to other
projects studying carbon sequestration in
fractured formations
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Future Plans

Continue to develop transfer functions

Continue development of coupling of vertical-
equilibrium and non-equilibrium domains to model
dual-porosity systems

Implement the new approach into TOUGHZ2, MRST
and vertically-integrated simulator

Continue sensitivity analysis of storage efficiency
Develop model for In Salah site

22
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THANK YOU!

Karl Bandilla
Princeton University
bandilla@princeton.edu
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Appendix

24



~
A
frreeeree i

BER!(ELEY LAB

g Organization Chart

Project PI
Prof. M. Celia
(Princeton)

Project co-PI Project co-PI Project co-PI Project co-PI
Dr. K. Bandilla Prof. S. Geiger Dr. F. Doster Dr. Q. Zhou
(Princeton) (Heriot-Watt) (Heriot-Watt) (LBNL)
l | | |
|

Development of Vertically-
Integrated Fractured
Reservoir Simulator

DFM Simulations & MR-
DBDP Development
Prof. S. Geiger

Implementation of MR-
DBDP into TOUGH2

Prof. M. Celia Br. E Doster Dr. Q. Zhou
Dr. K. Bandilla " (LBNL)
; (Heriot-Watt)
(Princeton)
DFM Simulations of MR- Model Application and
DBDP into MRST Sensitivity Analysis
Prof. S. Geiger Dr. Q. Zhou
Dr. F. Doster Dr. J. Birkholzer

(Heriot-Watt) (LBNL)
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Gantt Chart

light grey: accomplished; dark grey: planned; MS: mile stone
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Fiscal Year BP 1 BP 2 BP 3
Quarter 1 2 3 4 1 2 3 4 1 2 3 4

Task 1: Project Management, Planning and Reporting

Subtask 1.2 Kickoff Meeting MS

Task 2.0: Detailed DFM modeling of CO2 and brine

Task 3.0: Development of MR-DBDP model with analytic transfer function

Task 4.0: Development of new simulator capabilities

Subtask 4.3: incorporate new MR-DBDP into TOUGH2

Task 5.0: Model demonstration and sensitivity analysis

Subtask 5.4: Investigation of injection scenarios

Task 6.0: Simulator application to In Salah

Subtask 6.3: Sensitivity analysis
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Nothing to report
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