Area of Interest 2, Geomechanics of CO₂ Reservoir Seals DE-FE0023316

Peter Eichhubl¹, Pania Newell², Tom Dewers², Jon Olson³

 ¹ Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin
 ²Sandia National Laboratories, Albuquerque, NM
 ³UT Center for Petroleum & Geosystems Engineering

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Problem Statement

- Sealing efficiency of CO₂ reservoirs has to exceed 99%.
- Design criteria are needed that establish the long term sealing capacity of CO₂ reservoirs and to model leakage risk.
- Top and fault seal risk assessment well established in oil & gas exploration, but:
- <u>scCO₂ and CO₂ brine potentially interact</u> physically & chemically with top seal.
- Seal risk assessment criteria taking these interactions into account are needed for CO₂ systems.

Fractures in CO₂ caprocks Crystal Geyser analog site

Active on 10² - 10⁵ year time scales

Compositional changes of mudrock

Presentation Outline

- Benefit
- Project Overview
- Problem Statement
- Methodology
- Accomplishments to Date
 - Fracture mechanics experiments
 - Fracture & leakage modeling
- Summary

Benefit to the Program

- **Program goals:** Develop characterization tools, technologies, and/or methodologies that improve the ability to predict geologic storage capacity within ±30 %, improve the utilization of the reservoir by understanding how faults and fractures in a reservoir affect the flow of CO₂, and ensure storage permanence.
 - Area of Interest 2 Fractured Reservoir and Seal Behavior: Develop tools and techniques to increase the accuracy and reduce the costs of assessing subsurface seal containment and the seal/reservoir interface, including the measurement of in-situ rock properties in order to develop a better understanding of seal behavior when CO₂ is injected into a reservoir.
- Project is designed to
 - Provide calibrated and validated numerical predictive tools for long-term prediction of reservoir seal integrity beyond the engineering (injection) time scale.
 - Contribute toward technology ensuring 99% storage permanence in the injection zone for 1000 years.

Project Overview: Goals and Objectives

- **Derive predictive and validated numerical models** for fracture growth in chemically reactive environments relevant to CCUS top seal lithologies.
- **Perform laboratory fracture testing** to provide input parameters on fracture constitutive behavior, fracture rate and geometry, and deformation and transport processes involved in subcritical chemically assisted fracture growth for relevant top seal lithologies.
- Validate the laboratory observations against microstructural and textural observations on fractures from natural CO₂ seeps.
- Perform numerical simulations that are informed by field and lab results toward predictive tools for top seal integrity analysis, top seal mechanical failure, and impact on CO₂ leakage in CCUS applications.
- Demonstrate a means to upscale discrete and network numerical models to continuum scale reservoir models coupling geomechanics with multiphase flow and leakage.

Methodology

- Experimental measurement of subcritical fracture propagation in analog top seals
 - Short-rod test
 - Double torsion test
- Textural and compositional characterization
 - Fractures & CO₂ alteration in natural systems
 - Post-mortem analysis of lab test specimens
- Numerical modeling of fracture propagation in top seals
 - Discrete fracture modeling using cohesive zone models (Poster by Borowski et al.)
 - Fracture network modeling using JOINTS
 - Upscaled modeling for top seal deformation using Sierra Mechanics

Subcritical fracture growth

Results of subcritical crack growth affecting fracture network geometry

$$V = A \left(\frac{K_I}{K_{IC}}\right)^n$$

V: fracture propagation velocity K_I: mode-I stress intensity factor, K_{IC}: mode-I critical stress intensity factor (or fracture toughness)

A: a pre-exponential constant (Atkinson, 1984; Swanson 1984)

n: velocity exponent (SCI)

9

Double torsion fracture mechanics testing

DOUBLE TORSION (DT)

Hot plate & tray for temperature and fluid control

Sample geometry

Characterization of samples

Double torsion experiments

3) Determine K_{IC} , SCI, and K-V curve

K_{lc}/SCI across shale formations

Fracture toughness (air)

Subcritical index SCI (air)

- Significant variation among shale formations.
- n = number of samples
- Measured at ambient atmospheric conditions (~24 $^{\circ}$ C)

K_{lc}/SCI ambient vs water

K-V curve characteristics

DT tests represent Region I behavior ---- related to chemical reactions

JOINTS fracture network model

- Boundary element code
- Linear elastic
- Pseudo-3D, accounts for elastic interaction

 Opening-mode and mixed-mode fracture propagation
- Allows simulation of subcritical fracture propagation as function of
 - Subcritical index SCI
 - Elastic material properties
 - Distribution of nucleation sites (seed fractures)
 - For applied displacement or stress boundary conditions

JOINTS models of caprock failure

- Vertical section in shale caprock
- Fractures initiate at base
- Low K_{IC}, fractures propagate critically (SCI does not change pattern)
- High K_{IC}, high SCI, no fracture growth

Sierra Mechanics model of caprock failure

Failure modeled as zone of fractures across caprock (fractures modeled implicitly) Two-phase flow

Normal-faulting stress regime $\sigma H = 0.7 \sigma v$

Solid BCs: Sides and the bottom are fixed against normal displacement.

Fluid Bcs: The two adjacent vertical planes, the y–z plane x = 0 and x–z plane y = 0 are no-flow boundaries, the opposite vertical planes (x = 5 km and y = 5 km) are 18 constant pressure boundaries corresponding to the initial hydrostatic state.

Properties

Solid										
	Property	Aquifer	Caprock	Injection zone	Base	Units				
	Density	2100	2100	2100	2100	Kg/m ³				
	Biot's coefficient	1	1	1	1					
	Young's modulus	20	50	20	50	GPa				
	Poisson's ratio	0.2	0.12	0.2	0.12					
Fluid										
	Property	Aquifer	Caprock	Injection zone	Base	Units				
	Initial porosity	0.15	0.05	0.15	0.10					
	Intrinsic permeability	2x10 ⁻¹⁴	1x10 ⁻¹⁸	2x10 ⁻¹⁴	1x10 ⁻¹⁶	m ²				
Fracture										

Stiffness	Spacing
K _{ni} (Pa)	S (m)
1.5x10 ⁺¹⁰	1.00

Different scenarios

	Case	Reservoir thickness (m)	Caprock thickness (m)	Fracture orientation (Degree)
Base case	1	100	100	Without joint
Geometry	2	100	100	90
	3	100	50	90
	4	50	100	90
	5	50	50	90
Fracture orientation	6	100	100	30
	7	100	100	45
	8	100	100	60

Leakage scenarios using Sierra Mechanics: Effect of layer thickness

Change in pore pressure

Saturation of CO₂ at top of upper aquifer

- Thinner reservoir, thicker caprock \rightarrow higher pore pressure
- Thinner reservoir, thinner caprock → higher leakage of CO₂

Leakage scenarios using Sierra Mechanics: Effect of fractures

Change in pore pressure

Saturation of CO₂ at top of upper aquifer

- Vertical fractures → highest leakage
- 30° dip fractures \rightarrow pressure similar to case with no fractures

Accomplishments to Date

- Initiated rigorous fracture mechanics testing on caprock lithologies in aqueous environments relevant to CO₂ sequestration
- Performed initial numerical simulations on fracture network evolution by chemically aided fracture growth and caprock failure
- Performed coupled fluid flow-geomechanics simulations of caprock leakage using in Sierra Mechanics continuum models

Synergy Opportunities

- Share samples of caprock material with M.
 Prasad (School of Mines)
- Fracture mechanics analysis of Cranfield and FutureGen II core material
- Coordination with EFRC research on reservoir rock geomechanics

Summary

- Findings
 - Wide range in fracture properties for different caprock lithologies
 - Distinct stress corrosion effect observed in DT experiments in water
 - Subcritical fracture most significant for rocks of intermediate toughness
 - Effect of reservoir/caprock geometry on CO₂ leakage
- Next steps
 - Fracture testing under varying temperature, water composition, pressure
 - Integration of testing & fracture modeling

Acknowledgement

- This work is supported as part of the Geomechanics of CO₂ Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037.
- Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Appendix

Organization Chart/ Communication Plan

- Established Sandia-UT collaboration
 - Olson Holder Eichhubl on joint industry & DOE/RPSEA projects
 - Dewers Newell Eichhubl on joint EFRC

Team

Peter Eichhubl UT BEG

Pania Newell Sandia

Tom Dewers Sandia

Xiaofeng Chen UT BEG

Zhiqiang Fan UT BEG

Jon Holder UT PGE

Owen Callahan UT BEG

Gantt Chart

	Year 1		Year 2			Year 3						
Task/Subtask	9/1/2014-12/31/2014	1/1/2015-3/31/2015	4/1/2015-6/30/2015	7/1/2015-9/30/2015	10/1/2015-12/31/2015	1/1/2016-3/31/2016	4/1/2016-6/30/2016	7/1/2016-9/30/2016	10/1/2016-12/31/2016	1/1/2017-3/31/2017	4/1/2017-6/30/2017	7/1/2017-8/31/2017
1. Project Management and Planning	•	•	•	р	р	р	р	р				
2.1. Short rod fracture toughness tests		*	*	*	*	*	*	*				
2.2. Double torsion tests		~	•	р	р	р	р	р				
2.3. Fracturing in water-bearing supercritical CO2		~	•	р	р	р	р	р				
3.1. Field fracture characterization		~	•	р	р	р	р	р				
3.2. Textural and compositional fracture imaging				р	р	р	р	р				
4.1. Discrete fracture modeling using Sierra Mechanics		✓	•	р	р	р	р	р				Γ
4.2. Fracture network modeling using JOINTS				р	р	р	р	р				Γ
4.3. Upscaled modeling using Kayenta					р	р	р	р				
5. Model validation and integration	1				q	p	р	q				

Bibliography

List peer reviewed publications generated from the project per the format of the examples below

• None to report at this time

Extra slides

Short-rod testing geometry

SHORT ROD (SR)

Field fracture characterization in natural CO₂ systems

Task/Subtask Breakdown

- 1. Project Management and Planning
- 2. Measure Subcritical Crack Propagation in Analog Top Seals
 - 1. Perform short rod fracture toughness tests
 - 2. Perform double-torsion test
 - 3. Evaluate fracturing in water-bearing supercritical CO₂ at reservoir conditions
- 3. Characterize Fracture Processes in Natural CO₂ Systems
 - 1. Characterize field fractures
 - 2. Perform textural and compositional fracture imaging
- 4. Numerical Modeling of Fracture Propagation in Caprock
 - 1. Develop and validate discrete fracture numerical model
 - 2. Develop and validate fracture network numerical model
 - 3. Upscale discrete behavior for reservoir and caprock deformation modeling
- 5. Model Validation and Integration

CO₂-altered vs unaltered sandstone (reservoir)

Double torsion testing: Fracture toughness, subcritical crack index n (SCI)

37

Field & lab fracture imaging

Fracture tip morphology & alteration in field & lab fracture specimens

Zeiss Sigma Field Emission SEM with Gatan MonoCL4 & Oxford EDS for large-area high-resolution textural imaging. Installed at UT-BEG September 2014

Numerical Modeling of Fracture Propagation in Caprock

Kayenta material model

- Continuous yield surface
 - (a) 3D view: Principal stress space with the high pressure "cap"
 - (b) Side view: Using cylindrical coordinate system
 - (c) Octahedral view: Looking down at the hydrostat