Impact of Microstructure on the Containment and Migration of CO₂ in Fractured Basalts Project Number DE-FE0023382

Daniel Giammar, Mark Conradi, Sophia Hayes, and Phil Skemer Washington University in St. Louis

> Brian Ellis University of Michigan

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Presentation Outline

- Project Overview
- Carbon Sequestration in Fractured Basalts
- Research Approach
- Technical Status
 - Basalt acquisition and characterization
 - Mineral carbonation
 - In situ solid-state ¹³C NMR tool
 - Flow-through testing apparatus
- Summary and Opportunities

Benefit to the Program

- Program Goals Addressed
 - Improve reservoir storage efficiency while ensuring containment effectiveness.
 - Support ability to predict CO_2 storage capacity in geologic formations within ± 30 percent.
- Project Benefits
 - Generate datasets for evaluating the efficiency of carbon sequestration in fractured basalts.
 - Determine the extent to which mineral carbonation may either impede or enhance flow.
 - Develop the experimental infrastructure for evaluating CO₂ behavior in fractured materials.

- Overarching Project Objective: advance scientific and technical understanding of the impact of fracture microstructure on the flow and mineralization of CO₂ injected in fractured basalt.
- Budget Period I. Planning and Preliminary Experiments on Static Interactions with Basalts
 - Develop a library of natural and artificial basalts with a range of representative mineral contents and fracture microstructures.
 - Demonstrate the integration of bench-scale experiments with an array of characterization tools to identify the locations, amounts, and types of carbonate mineral trapping in fractured basalts.
 - Develop laboratory-scale system for evaluating CO₂-rich fluid interactions with fractured basalts.

- Budget Period II. Evaluation of Static Conditions and Development of Flow-through Capabilities
 - Evaluate the effects of basalt composition and fracture properties on the extent and mechanisms of carbon sequestration in diffusion-limited zones.
 - Quantify the extent to which confining pressure controls the propagation of fractures in basalts upon reaction with CO₂.
 - Create data packages that can be used for model development.
 - Develop laboratory-scale equipment for NMR and CT of pressurized systems with advective flow.

- Budget Period III. Evaluation of Fractured Basalts with Flow of CO₂-Rich Fluids
 - Examine the impacts of precipitation and fracture development on the permeability of fractured basalt to CO₂-rich fluids.
 - Estimate the storage capacity of fractured basalts as a function of mineral content and fracture structure, and quantify storage by different mechanisms.
 - Demonstrate the application of advanced NMR and CT tools to fractured basalts with flow.
 - Develop data packages that can be used for reactive transport model development.

Go/No-Go Decision Point 1. To proceed to Budget Period II, the following criteria must be met.

- A library of at least ten basalt samples with different compositions and fracture properties have been acquired and characterized.
- The reactor for performing static experiments with an applied confining pressure has been designed, fabricated, and tested with one sample.

Note: A "basalt sample" is a particular combination of composition and fracture property.

Sequestration in Magnesium-Rich Formations

Products of natural carbonation of peridotite (Oman). Matter and Kelemen, *Nature Geoscience*, 2009

Carbonate precipitates on basalts after 854 days of reaction at 103 bar CO₂ and 100° C Schaef et al., *Int. J. Greenhouse Gas Cont.,* 2010

- Most target formations are sandstones, but mafic (Fe- and Mg-rich) rocks are alternative formations with high mineral trapping capacity.
- Continued fracturing of the rock may be promoted by temperature and volume changes from reactions.
- Also applicable to ex situ mineral carbonation in engineered reactors.

Pilot-Scale Injections into Basalts

Pilot-scale injections into basalts have been performed in Washington and in Iceland.

Gislason and Oelkers, Science, 2014

Location of 1000 ton pilot-scale test by the Big Sky Carbon Sequestration Partnership, 2013

Calcite in a core retrieved from the site of the 2012 CarbFix injection of CO_2 -rich water into basalt in Iceland. 80% of injected CO_2 mineralized within 1 year.

www.or.is/en/projects/carbfix/

Methodology – Mineral Trapping

When and where do carbonate minerals precipitate in systems with high solid:water ratios and with mass transfer limitations? How does precipitation affect transport properties?

Research Questions

- How do reactions proceed in fractured rocks?
- What volume of a mafic rock is available for sequestration?
- Will carbonate mineral precipitation impede or accelerate sequestration?

Research Approach

Fractured Basalts

- · Natural and artificial rocks
- Varying composition and fracture structure

Bench-Scale Experiments

- Relevant pressure, temperature, and brine composition
- Static (dead-end fractures)
- Flow (monitor variation)
- With/without confining pressure

Characterization

- Pre- and post-reaction
- *Ex situ* and *in situ* techniques.

Forsterite Fractured Rock

- Artificial aggregates of olivine (Fo₉₀) from vacuum sintering.
- Reacted for 15 days in water at 100 °C 100 bar CO₂.
- Carbonate minerals form in narrow zones like fractures.

6 mm diameter 10 mm length ~25% porosity

Mineralization in Tight Gap Between Rock and Tubing

Post-Reaction Fracture Structure

Starting Basalt: Composition

🐺 Washington University in St.Louis

Starting Basalt: Microstructure

Columbia River flood basalt:

Olivine-rich basalt: Inclusions and serpentinized grains Срх Feldspar Mg-silicate Serpentinzed Mg-silicate Chromite Apatite eldspar Inclusio Glass 1000 µm 1000 µm 1000 µm 60 Average phenocryst size Phenocryst Size Olivine-rich basalt: 50 Comparison Ca-rich pyroxene: 123 µm Percent of Grains Plagioclase: 99 µm Serpentine: 143 µm Flood basalt: Ca-rich pyroxene: 75 µm 10 Plagioclase: 53 µm 0 Olivine: 88 µm 800 0 200 400 600 1000 1200 1400 Grain Size (µm)

Basalt Fractured Core

Saw-Cut Basalt 1-inch diameter, 1.6-inch length

Reassembled Core Wrapped with Epoxy

Single Groove Pattern 10 mm wide 80-100 um depth

Meandering Pattern 1 mm wide 80-100 um depth

Static Experiments with Basalt

Serpentinized basalt (CO) reacted for 4 weeks at 150°C and 100 bar CO₂.

• Spatially localized carbon accumulation.

• Direct evidence for carbonate mineral formation in fracture.

Static Experiments with Basalt

Pristine flood basalt (WA) reacted for 4 weeks at 150° C and 100 bar CO₂.

Sandpaper-roughened, saw-cut, 0.5-inch cores ~140 um fracture

Electron Microscopy

• Well-developed crystals have a location of maximum precipitation.

Raman Spectroscopy

• Aragonite (CaCO₃) identified.

High Pressure NMR Hardware

- NMR is element-selective, quantitative, and non-destructive.
- ¹³C NMR can track the growth of carbonate minerals.

High Pressure NMR Hardware

Flow-through Probe

- Fully constructed and able to get NMR
- Leak and pressure tested
- Heating and temperature control

Flow-through Fractured Basalt

 Evaluate silicate dissolution and carbonate precipitation along fracture under confining stress. Examine effect of reactions on transport properties. fracture 1 cm 2D XCT section of saw-cut basalt core Flow

Flow-through Fractured Basalt

 $\frac{\text{Preliminary experiments}}{P_{CO2} = 100 \text{ bar}}$ Confining pressure = 200-350 bar Temp = 50°C Flow rate = 3-5 mL/h

CO₂-driven dissolution resulted in permeability decrease under confining stress

Accomplishments to Date

- Acquisition, characterization, and fracture preparation of two natural basalts and one artificial basalt.
- Demonstration of carbonate mineral formation for all three materials upon reaction with CO₂-rich solutions.
- Integration of multiple techniques to characterize the location and identity of carbonate mineral formation.
- Development of a laboratory-scale system for evaluating CO₂-rich fluid interactions with fractured basalts held under confining pressure.

Decision Point Status

Go/No-Go Decision Point 1. To proceed to Budget Period II, the following criteria must be met.

- A library of at least ten basalt samples with different compositions and fracture properties have been acquired and characterized.
 - 8 samples acquired and characterized. At least 2 more by September 30

Natural Basalts	Status	Fracture Structure					
		roughened					
olivine-rich, pristine (WA)	complete	milled notch					
		milled flowpath					
		roughened					
olivine-rich, serpentinized (CO)	complete	milled notch					
		milled flowpath					
Grand Ronde (WA)	coordinating acquisition with PNNL						
Synthetic Basalts (iron free)							
forsterite-rich	complete	roughened					
Torstente-nch	complete	milled notch					
pyroxene-rich	in progress						
quartz-containing	In progress						

Note: A "basalt sample" is a particular combination of composition and fracture property.

- The reactor for performing static experiments with an applied confining pressure has been designed, fabricated, and tested with one sample.
 - fully complete

Synergy Opportunities

- Basalt Sequestration Projects: we can share data and materials with others studying carbon sequestration in basalts (Pollyea and Benson project, Big Sky Carbon Sequestration Project) to generate complementary and not duplicative data.
- Other Sequestration Projects: our integrated approach can be used to examine impacts of fracture microstructure on CO₂ behavior in other reactive geologic materials (e.g., caprocks).
- Modeling: our project is generating a rich dataset that can be used to evaluate reactive transport models and models that link transport and goemechanical properties.
- Technique Sharing: we have unique abilities (e.g., solid state ¹³C NMR) that can be brought to other groups and shared abilities (e.g., CT scans, triaxial tests) around which we can share best practices.

Summary

Key Findings

- Carbon mineralization in fractured basalts can result in mineral trapping on time-scales of years or less.
- Carbonate precipitation can be visualized using both *ex situ* and *in situ* techniques.
- Flow-through fractures in basalts can be achieved.
- Lessons Learned
 - Selection of materials is critical.
 - Our team has shared expertise in unexpected ways.
- Future Plans
 - Systematic set of experiments.
 - More experiments, including NMR and CT, with flow.

Washington University in St. Louis

giammar@wustl.edu (314) 935-6849

To say an a star and and

http://pages.wustl.edu/fracturedbasalts

- Co-PI's: Mark Conradi, Brian Ellis (Michigan), Sophia Hayes, and Phil Skemer.
- Students and Postdocs: Yeunook Bae, Megan Bushlow, Jinlei Cui, Jeremy Moore, Erika Sesti, Minmeng Tang, Rachel Wells, Wei Xiong
- Other: Helene Couvy

Appendix

- Organization Chart
- Gantt Chart
- Bibliography

Organization Chart

Gantt Chart

Task	Start Date	End Date		 Q1	FY 201 Q2	5 Q3	Q4		Q1 ,	F۱ Q2	2016 Q3	, Q4 ,	Q1	FY Q2	2017 Q3	, Q4 ,
Task 1.0: Project Management & Planning			-						1		I	1 1				
Subtask 11: Update PMP	01/07/15	02/06/15	-						ugu	151	9, 2	2015				
Subtask 12: Monthly & Quarterly Reporting	10/01/14	09/30/17														
Subtask 1.3: M eetings																
Subtask 14: Reports and Deliverables																••
Task 2.0: Prepare and Characterize Basal	Samples	•														
Subtask 2.11 Natural materials	10/01/14	12/23/14		ļ												
Subtask 2.12: Synthetic materials	01/01/15	04/02/15														
Subtask 2.13: Fracturing and characterization	01/01/15	06/30/15)											
Subtask 2.2: Sample Characterization	01/01/15	01/01/16			-			+	-							
Task 3.0: Static Experiments			_													
Subtask 3.11: Screening in immersion	01/01/15	09/29/15			<u> </u>			=								
Subtask 3.12: Systematic immersion expts	09/29/15	09/28/16														
Subtask 3.2.1: Confining pressure reactor test	04/01/15	10/01/15														
Subtask 3.2.2: Confining pres. systematic expts.	10/01/15	04/01/16														
Subtask 3.2.3: confining pressure uCT expt.	04/01/16	09/28/16	-									_				
Subtask 3.3.1: In situ NMR prelim experiments	04/01/15	10/01/15	1 -			,										
Subtask 3.3.2: In situ NMR syst. experiments	10/01/15	04/01/16														
Subtask 3.4: Data integration and modeling	04/01/16	09/28/16									<u> </u>					
Task 4.0: Core Flooding Experiments																
Subtask 4.11 Reactor assembly and testing	10/01/15	09/30/16														
Subtask 4.12: Experiments at UM	09/30/16	06/30/17														
Subtask 4.13: Flow-through with uCT	01/01/17	06/30/17												<u> </u>		
Subtask 4.2.1: Flow-through NMR probe dev.	04/01/16	10/01/16									<u> </u>					
Subtask 4.2.2: Flow-through NMR expts.	10/01/16															
Subtask 4.3: Data integration and modeling	01/01/17	01/01/18	1													

Bibliography

<u>Conference Presentations</u>:

- Giammar, D., Xiong, W., Hayes, S., Skemer, P., Conradi, M., Ellis, B., Moore, J., and D. Crandall, Characterization of mineral trapping within fractured basalts, 14th Annual Carbon Capture Utilization and Storage Conference, April 28 – May 1, 2015, Pittsburgh, Pennsylvania.
- Xiong, W. and D. Giammar, Carbon sequestration in fractured basalt, *Gordon Research Conference on Carbon Capture, Utilization and Storage*, May 31 June 5, 2015, Easton, Massachusetts