

Methods and Tools for Monitoring Groundwater Impacts

Project Number 1022403 (Task 4)

Christina Lopano

NETL - ORD

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Transforming Technology through Integration and Collaboration
August 18-20, 2015

Natural geochemical signals to monitor leakage to groundwater

FY 2015 Team

- Christina Lopano, NETL-ORD
- Ale Hakala, NETL-ORD
- Hank Edenborn, NETL-ORD
- J. Rodney Diehl, NETL-ORD
- Sheila Hedges, NETL-ORD
- Dustin McIntyre, NETL-ORD
- Paul Ohodnicki, NETL-ORD
- Tom Brown, NETL-ORD
- Djuna Gulliver, NETL-ORD
- Thai Phan, ORISE-NETL
- James Gardiner, ORISE-NETL
- Mengling Stuckman, ORISE-NETL
- Cantwell Carson, ORISE-NETL
- Brian Stewart, Pitt, ORISE
- Shikha Sharma, WVU, ORISE
- Dorothy Vesper, WVU
- Jinesh Jain, AECOM, NETL

Technical approach employs a multidisciplinary team (chemists, geologists, microbiologists, environmental scientists) in both laboratory and field work

Presentation Outline

- Project Goals and Benefits
- Project Overview and Background
- Technical Status:
 - Isotope methodology
 - Sensor development
 - Field Validation
- Accomplishments
- Summary and Future Direction

Benefit to the Program

Program Goals:

- Validate/ensure 99% storage permanence.
- Develop Best Practice Manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization...

Project benefits:

 There is a need to be able to quantify leakage of CO₂ to the near surface and identify potential groundwater impacts. This project works to develop a suite of complementary monitoring techniques to identify leakage of CO₂ or brine to USDW's and to quantify impact.

Project Overview:

Goals and Objectives

Monitoring Groundwater Impacts – What suite of measurements and/or tools can used in groundwater to detect CO₂ and/or brine leakage and to evaluate the impact?

- Establish the utility of stable isotopes to track migration of a CO₂ plume
- Develop and apply metal isotope tracers for QMVA
- Develop novel materials and sensors for in-situ monitoring
- Test and validate the use of CO₂ monitoring devices under field conditions
- Understand natural variability in background
- Better understand physical-chemical-biological parameters impacting signals for geochemical tracers

5

Monitoring Groundwater Impacts

Thermal springs (Natural Analog)

UNDERSTAND NATURAL BACKGROUND VARIABILITY

Developing and demonstrating a suite of geochemically-based monitoring strategies for groundwater systems, and developing a statistical understanding of natural groundwater variability in CO₂ storage systems.

Migration into Shallow Aquifers

Migration into other Deep Formations

Fiber Optics

Continuous CO2 Monitoring Devices

TEST AND VALIDATE THE USE OF CO₂ MONITORING DEVICES UNDER FIELD CONDITIONS

Progress to Date on Key Technical Issues

- Issue #1 Determining what natural geochemical signals can be used to monitor changes in groundwater chemistry
 - Natural samples are complex, thus interferences and contamination are common issues
 - Stable isotopes have been shown to be effective having robust background measurements of groundwater and injected substrate are key
 - Developed protocols for sample preparation and analysis of metal isotopes on samples with complex matrices: Sr and recently Li
 - Lab measurements can be time intensive, so some in-situ methods are also being explored:
 - Volumetric expansion and NDIR for in-situ field CO₂ measurements
 - Fiber optic sensors for CO₂ and/or proxies (e.g. pH)
 - In-situ LIBS analysis for changes in water chemistry
- Issue #2 Deconvoluting interferences and determining sensitivities of these techniques

Stable Isotope: CBM Site validation

Similar study is in progress at an EOR site in TX

Plans for Remaining Technical Issues – How?

Natural Geochemical Tracers in Groundwater

- develop and demonstrate a protocol for the use of a combination of natural geochemical tracers (e.g., isotopic, chemistry, trace elements, etc.) to monitor groundwater systems
- Utilize NETL's MC-ICP-MS system for metal isotopes (with Pitt)

2. Assessment of Continuous CO₂ Monitoring Devices

- understand the response and limitations of CO₂ monitoring devices (volumetric methods and direct measurement via NDIR) relative to CO₂ detection, including in the context of potential interference by other constituents (e.g. H₂S).
- 3. Development and Assessment of LIBS for In-situ Measurement of CO₂ Impacts in Groundwater
 - Use LIBS as a tool to monitor chemical signals in groundwater (in-situ) that reflect potential impacts to groundwater resulting from the introduction of CO₂ and/or brine.
- Development and Assessment of Novel Fiber-Optics Technologies for Downhole Measurement of Potential Groundwater Impacts
 - develop and demonstrate robust fiber-optic based materials & tool(s) capable of sensing (at elevated P & T) the introduction of CO₂ and/or brine into overlying formations or groundwater systems

Groundwater Monitoring: Metal Isotope Tracers

NETL ORD - Application to Complex Field Samples

- Metal isotope systems: track fluid-rock interaction, fluid origin, fate & transport. Use distinct isotope end-members to trace movement of plume in injected formation & to monitor leakage into overlying formations. Examples:
 - Mineral-fluid exchange (e.g., ⁸⁷Sr/⁸⁶Sr, ⁷Li/⁶Li, ²³⁴U/²³⁸U)
 - Subsurface redox conditions (e.g., ⁵⁶Fe/⁵⁴Fe, ²³⁸U/²³⁵U)
 - Origin and environmental tracking of brines (e.g., ⁸⁷Sr/⁸⁶Sr, ⁷Li/⁶Li)
- Isotopes available FY15 (MC-ICP-MS):
 - 87Sr/86Sr (24 samples/16 hours)
 - ⁷Li/⁶Li (16 samples/24 hours)
 - 234U/²³⁸U and ²³⁵U/²³⁸U (24 samples/48 hrs)
- Type of samples: water & rock
 - Field sampling: filtered and acidified samples
 - Water surface waters or monitoring wells
 - Transport & Analyze in lab
 - Separations from matrix (NETL ORD methods)
 - Run using MC-ICP-MS

NETL's Thermo Scientific NEPTUNE PLUS MC-ICP-MS at University of Pittsburgh, Dept. of Geology & Planetary Science

Metal Isotopes: Methodology

<u>Li isotope separation procedure:</u>

Pack 2.0 mL AG50W-X8 (200-400 mesh) resin in a Poly-Prep column

Wash with 10 mL 2% HNO₃, and then 10 mL 6N HCl

Condition with 10 mL 1.50 N HNO₃:70% CH₃OH

Wash with 10 mL 18.2 MΩ.cm water

Condition with 5 mL 1.50 N HNO₃:70% CH₃OH. Collect for pre-column check for Li

Load 0.5 mL sample in 1.0 N HNO₃, add drop wise 0.5 mL 1.50 N HNO₃:70% CH₃OH to "push" down sample. Discard

Collect Li fraction with 18.7 mL 1.50 N HNO₃:70% CH₃OH. Dry down. Redissolve in 2% HNO₃ prior to isotopic measurement

Pass 2 mL 1.50 N HNO₃:70% CH₃OH. Collect for post-column check

Robust separation procedures are fully developed for Sr and Li isotopes

- Li separation for ⁷Li/⁶Li
- Disposable cation columns low blank, high yields
- Effective separation from sample matrix for a variety of sample matrices: brines, surface water, and sedimentary rocks.
- 16-20 samples/8 hrs

Li isotope separation setup (Phan et al., in prep)

Metal Isotopes: In Practice

EOR Site - East Seminole, TX

CO₂ Injection Wells (E)

Metal Isotopes: In Practice

Li Isotope Preliminary Results – EOR Site (TX)

→ Sr and Li isotopes are effective geochemical tracers of potential brine migration from the subsurface upward to shallow groundwater 13 system

Groundwater Monitoring: Direct CO₂ Measurements

TECHNIQUES

- 1. CarboQC (CQC)— measure CO₂ via volumetric expansion (FY15)
 - Grab sampling (i.e. not continuous)
 - Surface or shallow depth (~ 25 180 ft depth using a pump)
 - Measurements directly in the field or analysis of sealed field samples in the lab
- NDIR non-dispersive infrared real time analysis (FY 15)
 - Continuous measurement
 - Start at surface shallow borehole
 - Ideally a dedicated monitoring well
 - Currently testing "hybrid" method

Direct Field CO₂ Measurements

Side-by-Side Comparison of Methods (NDIR vs CQC)

Direct Field CO₂ Measurements

Upcoming Field Work

- Eliminate H₂S interferences with CO₂
 - Analysis of Texas EOR samples using lab methods (precipitation and/or sol-gel techniques). (CQC)
- Shakedown trips to high CO₂ sites to test newly-fabricated flow-through apparatus and the simultaneous measurement of CO₂ on pumped water using multiple methods
- Preliminary plans to test NDIR & CQC in groundwater monitoring wells at the Illinois Basin – Decatur Project (IBDP), a large-scale carbon capture and storage project. (~ Sept 2015)

Groundwater Monitoring: LIBS

Laser Induced Breakdown Spectroscopy

- How Miniaturized laser technology produces sparks underwater, resulting atomic emission from sparks can be used to measure concentrations (ICP-MS). Probe can be placed down-hole for in-situ measurements of groundwater chemistry.
- What Qualitative and Quantitative analysis of brine (Na, Li, Mg, Ca, K, Sr). Concentrations measured from the ppb and ppm range to the % range using synthetic brines in the lab. Measurements performed at elevated pressure (1800psi) in carbonated brine
- When Mark 1 prototype development underway. Atomic interferences and enhancements currently being studied. Anticipated time frame for initial field testing – end FY 2016

LIBS Sensor:

Lab testing in brine

Measurement Bounds (ppb and ppm)

Matrix Effects (Enhancements with Na)

Table 3. Estimated Limit of Detection (LOD) and Limit of Quantification (LOQ)^a

	R^2	LOD	LOQ
Sr	0.9990	$2.89 \pm 0.11 \text{ ppm}$	$9.63 \pm 0.39 \text{ ppm}$
Ca	0.9997	$0.94 \pm 0.14 \text{ ppm}$	$3.11 \pm 0.07 \text{ ppm}$
Li	0.9988	$60 \pm 2 \text{ ppb}$	$0.19 \pm 0.01 \text{ ppm}$
K	0.9977	30 ± 1 ppb	$80 \pm 4 \text{ ppb}$

[&]quot;The coefficient of correlation (R2) is indicated.

LIBS Sensor:

Lab testing at pressure

- Elevated temperature and pressure
- Investigate effect on atomic emission
- Investigate measurement capability

LIBS Sensor:

Miniaturization

Towards enabling downhole deployment of measurement optics

Figure 1: In A, the calibration curves for Li, Sr, Rb, and Ba are shown for a series of calibrated rock glasses using LIBS from a passively q-switched laser. In B, a photograph of the prototype downhole passively q-switched laser is shown.

20

Groundwater Monitoring:

Fiber Optic Sensors

GOAL: Extending the Capabilities of Fiber Optic Sensors for Chemical Sensing (e.g. CO₂ Monitoring) Through Integration with *Functional Nanomaterials*

PI – Ohodnicki

- pH controlling silica surface charge density using silica optical fibers coated with nanoparticles to optimize pH sensing under a range of T & P
- 2) CO₂ directly measure using chemical specific Metallorganic Framework (MOF) coatings on optical fibers

Time Line

- Investigate and characterize novel functional materials for potential use & future optimization – FY 2015 - 2016
- Couple with other sensor initiatives to adopt packaging and deployment strategies - FY2016 - 2017
- First sensor deployment (ideally in a water monitoring well) – FY2017

Novel FO Materials:

Understanding Transmission in Brines

Is there a correlation between optical response and salt solutions for optical fibers coated with Au/TEOS sol solutions?

- The porosity of the silica coating determines how salinity will affect optical response
- pH dependence of response is intimately linked with the surface charging behavior of the matrix phase so alternative oxide matrices ²² will be investigated: TiO₂ and ZrO₂

Fiber Optic Sensor

Metallorganic Framework (MOF) Based Sensors for CO₂

Chemical-Specific Interactions of Metallorganic Framework Based Materials Have Recently Been Utilized for Optical Fiber Based Sensing of CO₂ in collaboration with Oregon State U.

Key Findings to Date (FY2015)

- Team has successfully utilized stable isotopes for monitoring a coal-bed CO₂ sequestration site (GW and Soil Gas)
- Team developed a methodology for high through-put Sr and Li isotope measurements in complex sample matrices using novel sample prep techniques and the MC-ICPMS
- Team has used novel in-situ CO₂ field measurement techniques at surface conditions and is developing methods for accurate in-situ downhole measurements
- Team has identified and eliminated interference (H₂S) with measurements of CO₂ at EOR sites via volumetric techniques (CarboQC).

Key Findings to Date (FY2015)

- LIBS lab measurements of atomic species for potential leak detection (ppb and ppm)
- Lab investigations of interferences and enhancements in ground water LIBS sensing
- FOS lab measurements successfully show CO₂ detection in harsh environments
- MOF show promise as novel sensing material
- Publication of various journal papers, conference papers, and Patents

Summary

- Lessons Learned: Real world field conditions may present a lot of natural interferences
 - Baseline measurements are key to the success of understanding mixing and method sensitivity
 - Multiple measurement techniques are key
 - Fundamental research helps de-convolute interferences

– Future Plans:

- Further field testing of methods at CO₂ storage sites
 - Different Geologies (sandstone, carbonate, etc.)
 - Different activities (CO₂ only, EOR etc.)
- Lab experimentation on novel sensors for eventual field testing (in-situ, real-time data collection)
- Statistical analysis of lab data and forward modeling

Synergy Opportunities

- Compile data and results from different field sites throughout the country
 - Look for data trends between types of reservoir, storage conditions, etc.
- Deploy sensing tools and collection methods at different sites – collaboration & tool validation
- Use real world experiences to help inform "best practices" for monitoring

Appendix

Organization Chart

4.1.1	Natural Geochemical Tracers in Groundwater	To develop and demonstrate a protocol for the use of a combination of natural geochemical tracers (e.g., isotopic, trace elements, etc.) to monitor groundwater systems.	Hakala, Hedges, Phan, Stuckman, Bank
4.1.2	Assessment of Continuous CO2 Monitoring Devices	To understand the response and limitations of (commercially available) continuous CO2 monitoring devices relative to CO2 detection, including in the context of potential interference by other constituents (e.g. H2S).	Edenborn, Vesper (WVU) , Lopano
4.1.3	Development and Assessment of LIBS for Measurement of CO2 Impacts in Groundwater	To develop and demonstrate LIBS as a tool to monitor chemical signals to groundwater that reflect potential impacts to groundwater resulting from the introduction of CO2 and/or brine.	McIntyre, Jain, Carson, Goueguel, Sanghapi
4.1.4	Development and Assessment of Fiber-Optics Technologies for Downhole Measurement of Potential Groundwater Impacts	and/or brine into groundwater systems either	Ohodnicki, Brown

Organization Chart (cont'd)

4.2.1	Assess impacts: natural groundwater variability	Document baseline variability for key monitoring signals in groundwater for aquifers prior to and during CO2 injection and to document baselines in potential source terms from the CO2 reservoir.	Hakala, Hedges, Diehl, Stanko, Paukert, Phan, Bank
4.3.1	Experimental studies on (bio)geochemical behavior of aquifers in response to the introduction of CO2 and/or brine	This activity is focused on experimental studies on samples from a variety of aquifer classes to identify expected (bio)geochemical behavior of aquifers in response to the introduction of CO2 and/or brine, focusing on how the responses change based on aquifer class; how they change over time.	Lopano, Gulliver, Bank, Phan

Gantt Chart

	1																						
	-	Project Dates																					
	For each Task, Subtask,																		FY19				
	Sub-subtask of your WBS		<u> </u>	FY	15		FY16				FY17				<u> </u>	FY	18		ļ ,				
	Start	Finish																					
	Reflects the	Reflects the date the work																					
	date the work is scheduled	is scheduled																					
FY15 Carbon Storage (Project Period: 10/01/14 – 09/30/19)	to begin	for completio		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1113 Carbon Storage (110ject Ferrout 10/01/14 - 03/30/13)	to begin	Tor compretio	7	/1.15.1.A		Q3	QŦ	Q1	Q2	Q3	QŦ	41	Q2	_ Q 3	Q-	Q1	QZ	43	Q+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	QZ	Q3	M1.19.1.B
			"	01.13.1.A										}						;			W1.13.1.B
1. Project Management and Planning	10/1/2014	9/30/2019		<u> </u>	<u> </u>					1				<u> </u>									\rightarrow
										DP.16.2.01	ł			{	М	1.18.2.A						-	M1.19.2.B
		- / /												}		◊							♦
Reservoir and Seal Performance 1.1 Understanding Relative Permeability, Residual Saturation, and Porosity in Reservoirs to Reduce	10/1/2014	9/30/2019	-		ļ	·				}				}									
The state of the s	10/1/2014	9/30/2019		\leftarrow	-	1			-	1	-	-	⊨—	}	-								\rightarrow
Uncertainty in Long-Term CO ₂ Storage and Efficiency	10/1/2014	9/30/2019	-		ļ	ļ			<u>}</u>	 	ļ		<u>,</u>	ļ	 			ļ	ļ	ļ			
2.2 Improve Characterization of Physical Changes in Reservoir and Seal Rock due to CO ₂	10/1/2014	9/30/2019		\leftarrow					-			-	_	1									\rightarrow
ELE IMPROTE GIAL GEAL ELECTION OF HYSTER GIALINGES IN IESER FOR ANA SEAL HOOK due to GO Z	10/1/2011	3/00/2023	1	ļ	 	 			<u> </u>	 		 	<u> </u>	 	 				<u> </u>	·····			
2.3 Determine Impact of Microbial Induced Changes on Reservoir Performance	10/1/2014	9/30/2019		\leftarrow																			\rightarrow
					1	DP.15.3.01		M1.16	.3.A	1		1		-		M1.18	.3.B						
				١.				0						}		0							
3. Shales as Seals and Unconventional Reservoirs	10/1/2014	9/30/2019	4	<u> </u>		ļ				ļ				ļ									
3.1 Understanding Permeability, Residual Saturation, and Porosity in Shale to Reduce Uncertainty in Long-		. / /		\leftarrow	<u>: </u>	-				1		<u> </u>	<u> </u>	}					\longrightarrow	. :			
Term CO ₂ Storage and Efficiency	10/1/2014	9/30/2018	4		<u></u>	ļ				ļ	ļ				ļ				ļ				********
3.2 Improve Characterization of Physical Changes in Shale with Exposure to CO ₂	10/1/2014	9/30/2019		\leftarrow	-				1	1		-		3						-			\rightarrow
3.2 Improve characterization of Physical changes in Shale with Exposure to CO ₂	10/1/2014	3/30/2013	-	********											ļ								*******
3.3 Field Activity to Obtain, Log, Ship, and Store Shale Core from South Dakota	10/1/2014	12/31/2015		⇤	1			\rightarrow						}								1	
sis from hearing to obtain 208, singly and store sindle core from board barroa	10/1/2011	12/01/2015	1	********			M1 15	.4.B M1.	164A		DP.16.4.01	1		}			**********				*********		********
						1	1111114		,			1											
4. Monitoring Groundwater Impacts	10/1/2014	9/30/2019	╝																				→
				—	<u> </u>									<u> </u>					\longrightarrow				
4.1 Develop and Demonstrate Monitoring Tools and Protocols for Groundwater Systems	10/1/2014	9/28/2018	-	********				*********						}			*********						
4.2 Assess Impacts: Natural Groundwater Variability	10/1/2014	9/30/2019		\leftarrow	-	1			} 	1		 	-	<u> </u>									\rightarrow
4.2 Assess impacts. Natural Groundwater variability	10/1/2014	3/30/2013	1	********						 		·		 									
4.3 Fundamental Controls on Groundwater Composition	10/1/2016	9/30/2019										\leftarrow											\rightarrow
					·	/			ţ	·	·			·····	,				ļ				~~~~
				L			0			0	DP.16.5.0	Off										-	
5. Resource Assessments	10/1/2014	9/30/2018	_											{	ļ					ļ			
	40/4/004	0/00/00:5		\leftarrow		}			-		\rightarrow			\$									
5.1 Develop Defensible Department of Energy Methodology for Regional Assessment	10/1/2014	9/30/2016	-		<u></u>	ļ			ļ	ļ				ļ	ļ				ļ	ļ			
5.2 Expand Methodology to Include Stochastic Approach for Key Parameters	4/1/2015	9/30/2016				\leftarrow				1	\mapsto	1		3									
3.2 Expand mediodology to include stochastic Approach for key rataffects	+/1/2013	3/30/2010	1			 			·····	 				<u> </u>	†				······	h			
5.3 Expand Methodology to Include Geospatially Variable Key Parameters	10/1/2015	9/30/2018						\leftarrow											\mapsto			1	
					***********				·		*******	4				4							

Bibliography

- Chong, X., Kim, K., Ohodnicki, P.R., Li, E., Chang, C.H., and Wang, A., "Near-Infrared Absorption Gas Sensors Using Metal-Organic Framework-Coated Optical Fibers," submitted to the 2015 Conference on Lasers and Electro-Optics (CLEO 2015), under review. (Task 4.0)
- Chong, X., Kim, K., Ohodnicki, P.R., Li, E., Chang, C.H., and Wang, A., "Ultra-Short Near-Infrared Fiber-Optic Sensors for Carbon Dioxide Detection," submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Sensors Conference, under review. (Task 4.0)
- Goueguel, C., McIntyre, D., Singh, J., Jain, J., and Karamalidis, A., "Laser-Induced Breakdown Spectroscopy of High-Pressure CO₂-Water Mixture: Application to Carbon Sequestration," manuscript number 13-07383, *Applied Spectroscopy*, 2014, Volume 68, Number 9. (Task 4.0)
- Goueguel, C., McIntyre, D.L., Jain, J. Karamalidis, A.K., and Carson, C. (2015) "Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy" *Applied Optics*, 54(19), 6071-6079.
- Kim, K., Chong, X., Kreider, P., Ohodnicki, P.R., Baltrus, J.P., Wang, A.X., and Chang, C.H., "Plasmonics-Enhanced Metal-Organic Framework Nanoporous Films for Highly Sensitive Near-Infrared Absorption," submitted to the *Journal of Materials Chemistry C*, under review. (Task 4.0)
- Meier, B. and Sharma, S. (2015) "Using stable carbon isotopes to track potential leakage of carbon dioxide: Example from an enhanced coal bed methane recovery site in West Virginia, USA. *International Journal of Greenhouse Gas Control*, 41, 107-115.
- Meier, B., "Using Stable Carbon Isotopes to Monitor for Potential Leakage of CO₂ at an Enhanced Coal Bed Methane Recovery Site in Marshall County, WV," M.S. Thesis, West Virginia University, December 2014. (Task 4.0)
- Parthasarathy, H., Baltrus, J., Dzombak, D.A., and Karamalidis, A.K., "A Method for Preparation and Cleaning of Uniformly Sized, Arsenopyrite Particles for Dissolution Experiments," submitted to *Geochemical Transactions*, 2014. (Task 4.0)
- Wang, C., Ohodnicki, P., Su, X., Keller, M., Brown, T., and Baltrus, J., "Novel Silica Surface Charge Density Mediated Control of the Optical Properties of Embedded Optically Active Materials and its Application for Fiber Optic pH Sensing at Elevated Temperatures," *Nanoscale*, in press, 2014. (Task 4.0)

Bibliography

- Jain, J.C., H.M. Edenborn, C.L. Goueguel and D.L. McIntyre. Use of LIBS to detect CO₂ leaks from geological storage based on mineral carbonate interactions in groundwater. **American Chemical Society National Meeting and Exposition**, Denver, CO, March 22-26, 2015.
- Edenborn, H.M. and D.J. Vesper. Competitive influence of H₂S on CO₂ measurements in groundwater by multiple volumetric expansion. **Geological Society of America Southeastern Section Annual Meeting**, Chattanooga, TN, March 19-20, 2015.
- Jain, J. and H.M. Edenborn. Monitoring carbonate precipitation and dissolution due to elevated CO₂ in groundwaters. **Geological Society of America Southeastern Section Annual Meeting**, Chattanooga, TN, March 19-20, 2015.
- Vesper, D.J., H.M. Edenborn, A.A. Brookings, and J.E. Moore. 2015. A field-based method for determination of dissolved inorganic carbon in water based on CO₂ and carbonate equilibria. Water Air and Soil Pollution. 226:2348-2360
- Carson, C. G., Goueguel, C., Jain, J., & McIntyre, D. (2015, May). Development of laser-induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from geologic carbon sequestration. In SPIE Defense+ Security (pp. 94671K-94671K). International Society for Optics and Photonics.
- Goueguel, C., Jain, J., Carson, C., McIntyre, D., & Karamalidis, A. (2014, August). Application of laser induced breakdown spectroscopy (LIBS) to analyze CO2-bearing solutions in HTHP environment. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY (Vol. 248). 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC.
- Riddell, J.L., D.J. Vesper, H.M. Edenborn and J.B. Martin. Seasonal variations in diel behavior of dissolved inorganic carbon in a coal mine drainage stream. Submitted to Geological Society of America Annual Meeting, Baltimore, MD, November 1-4, 2015.