

Farnsworth Unit

Southwest Regional Partnership on Carbon Sequestration (SWP) DE-FC26-05NT42591

Reid Grigg¹ - Robert Balch¹ Brian McPherson^{1,2}

¹New Mexico Institute of Mining and Technology ²University of Utah

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)
 - Simulation and Risk (Brian McPherson)
- Summary, Questions and Answers

Brief Summary of Goals

The SWP's Phase III is a Large-Scale EOR-CCUS Sequestration Test

General Goals:

- One million tons CO₂ injection
- Optimization of storage engineering
- Optimization of monitoring design
- Optimization of risk assessment
- "Blueprint" for CCUS in southwestern U.S.

Brief Summary of Accomplishments

- Continuous geologic characterization;
- Annual updated geo-model;
- Continuous history match;
- Continuous monitoring (ongoing);
- New risk registry and assessment;
- Full FWU 3D surface seismic survey;
- 3 Characterization Wells drilled, cored, logged;
- 3 3D VSP and 4 crosswell baselines
- ~540,000 (~1,070,000) tonnes CO₂ injected
- ~335,000 (~ 815,000) tonnes CO₂
 purchased
- ~316,000 (~ 760,000) tonnes CO₂ stored

Project Site

36"15'19,84" N 100"58'54,61" W elev 2994 ft

History Match Effort: Actual Data

CO₂ injection/production and oil production since 12/2010

Relative volumes of injected fluids (yellow) and produced fluids (red)

5-6

Bubble Map Western Half FWU.

Injection: 14,794,360 res. bbls

Production 14,033,352 res. bbls.

CO₂ injection/production and Oil production Since 10/2013

CO₂ Utilization

CO₂ lost to the system during recycle

Found another risk to add to the registry!

Above Normal Rain Fall: Standing water and weeds.

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)
 - Simulation and Risk (Brian McPherson)
- Summary, Questions and Answers

Characterization Efforts

Goal – Improve Geologic Understanding

- Focuses on describing and defining the geology and depositional system for the Morrow B, secondary reservoirs, and cap-rock layers
 - Geologic Characterization Utilizes 750ft of acquired core, modern logs in 3 wells, and legacy logs in 145 existing wells
 - Seismic Characterization, utilizes acquired baseline and legacy data to define structure and stratigraphy, and to distribute reservoir properties for models.
- Data and interpretations support modeling efforts, MVA program, Simulation and Risk Assessment

Conceptual Geologic Model

P

Conceptual Geologic Model

S

P

Seismic Characterization

- 3D, VSP, cross-well, and passive seismic when combined with acquired well logs, core, and other physical data provide a framework for a detailed faciesbased geomodel.
 - Surface Seismic survey provides framework and structural/stratigraphic framework to construct geologic models for the entire field
 - Allows for interpretations of faults and other potential features that could impact flow
 - 3D VSP and cross-well data allow for more detailed interpretations around injection wells.
- Interpretations improve geologic understanding and ultimately improve MVA, simulation, and risk studies.
- Most recent model delivered in June 2015

Existing and Planned Seismic

Surface Seismic Top Morrow Interpretation

Figure by Bob Will, SCS

Well 13-10A (GR)

Seismic Acquisition Scheduling

Existing 2D Data – Basin Modeling

- Existing 2D data is mostly Mid 1980's vintage and 15-64 fold
- Important geologic considerations:
 - thermal history,
 - burial history,
 - tectonic history,
 - vitrinite reflectance,
 - TOC,
 - heat conductivity/ thermal gradients/
 - stratigraphy,
 - Structure,
 - porosity &permeability,
 - unconformities,
 - fluid flow regimes, etc.

Major Structural Tops with Well Ties

NET

SWP

Large Scale Faults and Channels

P

Geologic Model - Current State

- Integrates seismic and well data and honors both
- Channel features can be correlated across reservoir
- Includes fault planes as picked from seismic interpretation.

Next Steps

- Geologic Characterization
 - Reservoir Analysis integrate Macro and micro scales
 - Study fluid rock interactions, and implications for sweep and storage efficiency
 - Caprock Analysis
- Seismic Characterization
 - Detailed geologic model centered on two injection wells based off of 3D VSP data
 - Basin-scale petroleum system modeling

MVA Work

- Focuses on establishing baseline data, then comparing repeat data to ensure successful long term storage of CO₂
 - Direct monitoring tests repeat air and water samples for seeps, leaks, and well-bore failures
 - Seismic MVA utilizes time lapse seismic data at a variety of scales to image the CO₂ plume over time
- MVA also uses geologic models and simulation to make predictions of storage security

Direct Monitoring Strategy

Detecting CO₂ at Surface:

- Surface soil CO₂ flux
- Atmospheric CO_{2/}CH₄ eddy flux
- Gas phase tracers

Detecting CO₂ and/or other fluid migration in Target/Non-Target Reservoirs:

- Groundwater chemistry (USDWs)
- Water/gas phase tracers
- Self-potential

Tracking CO₂ Migration and Fate:

- In situ pressure & temperature
- 2D/3D seismic reflection surveys
- VSP and Cross-well seismic
- Passive seismic
- Fluid chemistry (target reservoir)
- Water/gas phase tracers
- Microgravity surveys
- Water/gas isotopes

- Surface and Atmospheric CO₂/CH₄ flux
 - Soil flux measured quarterly
 - Very sensitive
 - Eddy flux measured continuously
 - Wide area
 - Multiple stations can "triangulate" point sources

- Fluid Chemistry
 - USDW and reservoir chemistry analyzed quarterly
 - Monitored for brine and/or CO₂ leakage from reservoir to USDW
 - Monitored for CO₂
 breakthrough &
 migration

Tracers

- Aqueous-phase tracers injected with water; Vapor-phase tracers injected with CO₂
 - Determine reservoir fluid-flow patterns
 - Detection and quantify CO₂/brine leakage to subsurface/atmosphere
 - Evaluate CO₂ saturation levels and storage capacity
 - Evaluate sweep efficiency
 - Confirm other verification
 methods

- CO₂ Accounting
 - CO₂, water and oil are accurately metered to/from each injection/production well, and reported daily
 - Allows for near real-time evaluation of CO₂ accounting
 - Currently assessment: >300,000 tonnes of 100% anthropogenic CO₂ stored in subsurface.

Seismic Monitoring

- First repeat 3D VSP and cross-well data acquired.
 - Direct differencing of the volumes is inconclusive, but only 28,000 tonnes had been injected into the imaged pattern
- Surface and subsurface passive seismic recording to check for induced seismicity

 Currently archiving well-bore seismic data
- Performing Fluid substitution modeling to understand sensitivity of the system to CO₂

Property Modeling

 Property modeling > Scale up well logs, select wells, and logs, and method ex shown is TNPH

Petrophysical Modeling

- Petrophysical modeling, Can take results straight from simulation models or can use geostatistics to calculate from elan logs.
- Define a static state for before CO₂, and a second one for after.

Example of Pressure distribution showing Overpressure at Morrow B Level

Seismic Calculated: 60 hz Ricker Wavelet

P

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)
 - Simulation and Risk (Brian McPherson)
- Summary, Questions and Answers

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)

-Simulation Tasks and Results

Summary, Questions and Answers

SWP Simulation Analyses

Objective

• Contribute to the understanding of carbon dioxide utilization and storage in petroleum reservoirs via the iterative application of numerical simulation and comparison with field observations.

Research Thrust Areas

- Carbon dioxide interactions with reservoir minerals and fluids.
- Aqueous, nonaqueous liquid, and gas relative permeability models.
- Mixed wettability capillary pressure models.
- Reservoir production history matching through primary, secondary, and tertiary recovery.
- Predictions of future production and carbon dioxide storage in the reservoir.
- Scientific high performance computing numerical simulator for enhanced oil recovery and carbon dioxide storage with coupled geochemistry and geomechanics.

Reduced order models for risk assessment analyses.

Connections with other SWP Workgroups

Simulation WG – Risk Assessment WG

- Risk Assessment response surfaces of reservoir behavior for guiding historical matching and field process interpretation.
- Simulation provides HPC numerical simulators, three-phase relative permeability models, and historically matched geologic conceptual models.

Simulation WG – Characterization WG

- Characterization provides scheduled updates to a series of standardized geologic conceptual models and computational domains.
- Simulation identifies data needs and visualization of reservoir thermal and hydrological processes.

Simulation ^{WG} – Monitoring, Verification and Accounting ^{WG}

- Simulation contributes to the understanding of field observations via numerical simulation of reservoir processes.
- MVA records field observations for comparisons against numerical simulations and identifies data anomalies

Relative Permeability and Mixed Wettability Models

- Exploration of the impact of relative permeability type models and parameters on the fate of CO₂ injected into deep saline reservoirs
- Exploration of the impact of three-phase relative permeability models and hysteresis models on the enhanced recovery of oil and long-term storage of CO₂ injected into a petroleum reservoir

Four three-phase relative permeability models to calculate the impact of nonaqueous liquid relative permeability on the fate of injected CO₂

Normalized data of the total mass of CO_2 through time as trapped gas, dissolved gas, and mobile gas

Carbon Dioxide Interactions

- Numerical reactive transport modeling of water-CO₂-mineral interactions.
- Compositional construction of Farnsworth oil sampled in 1956 from saturation pressure, constant mass expansion, differential liberation, and multi-stage separator experiments.
- Minimum miscibility pressure analysis of 1956 Farnsworth oil sample.

Mole fraction of aqueous CO_2 after 30 years, with CO_2 injected for first 10 years.

Mass (kg) of CO_2 precipitated as carbonate minerals per bulk volume (m³) after 30 years, with CO_2 injected for first 10

Minimum miscibility pressure determination for pure CO_2 and compositional construction of Farnsworth oil sampled in 1956.

History Matching, Reservoir Performance, and CO₂ Storage

- Calibrated history match of Farnsworth unit over primary and secondary recovery.
- Predictions of CO₂ utilization and storage and tertiary oil recovery.

SWP

HPC Scientific Simulator

- Release STOMP-EOR to the SWP community with coupled geochemistry with sequential and threaded implementations
- Development of block refinement grid capabilities for isolation of five-spot well patterns
- Parallelization via Global Arrays and MPI; release to SWP planned for early 2016

Nonaqueous-liquid saturation around a

five-spot pattern in the Farnsworth Unit

L after 2500 days of primary recovery.

Color-scale reservoir pressure and iso-surface of CO2 extent after 500 days of the WAG schedule.

Z_{co2}: 0.01 0.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89 0.97

Reduced Order Modeling

- Probabilistic risk analysis of CO₂ storage and EOR using a response surface methodology (RSM) for Farnsworth.
- Development of an integrated framework for optimizing CO₂ sequestration and EOR.
- Quantification of uncertainties in CO₂ trapping mechanisms with a generic model using a polynomial chaos expansion method.
- Quantification of risk analysis on the potential chemical impacts on groundwater in Ogallala aquifer due to CO₂ leakage using RSM approach

The uncertainty bounds of predicted TDS and pH.

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)
 - Simulation and Risk (Brian McPherson)
- Summary, Questions and Answers

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)

-Risk Assessment and Results

Summary, Questions and Answers

Risk Identification (Risk Registry)

S

P

- Qualitative Risk Analysis
- Quantitative Risk Analysis
- Risk Response Planning
- Risk Monitoring and Control

S

P

SWP

Risk Identification (**Risk Source Assessment**)

Online Risk Workshop

- Jan. 13 and 16, 2014
- Expert-Weighted Risk (= Likelihood x Severity) for ranking
- Total 405 FEPs identified
- 23 project experts evaluated 79 initial FEPs, and generated & evaluated 24 new FEPs.
- 10 FEP groups

Ongoing 2015 FEPs Re-evaluation/Ranking

- 1st email survey during May & June 2015
- 13 project experts evaluated top 50 FEPs of 2014
- Finished preliminary analysis
- 2nd survey for the identification of new FEPs is under preparation

S

P

P

S

- Risk Management Planning
- Risk Identification (Risk Registry)
 - Qualitative Risk Analysis
 - Quantitative Risk Analysis
 - Risk Response Planning
 - Risk Monitoring and Control

Qualitative Risk Analysis

- Updated the risk registry and identify interactions between FEPs
- Identified the risk factors for the quantitative risk analysis
- Constructed the process influence diagram (PID)
 - PID identifies and represents all possible influences between all FEPs within a system.
 - Risk workgroup provided appropriate scenarios to the simulation workgroup throughout the PIDs for the qualitative risk analysis
 - > Only direct impacts are included.
 - > No loop or chain starts with Events.

S

P

Risk Monitoring and Control

S

P

Risk Monitoring and Control

Quantitative Risk Analysis (Risk Characterization)

- Explicit treatment of uncertainties
- Quantitative information on the risk
- Probabilistic assessment due to uncertainty
 - Response Surface Method (RSM) combined with Monte Carlo samplings
 - Polynomial Chaos Expansion (PCE)
 - CO2PENS

Multi-scale simulations of CO_2 -oil-water flow and transport in a heterogeneous reservoir based on a five-spot EOR pattern

Probabilistic Risk Analysis

Farnsworth 3-D reservoir model

- Upscaled model with 202,120 cells(163*155*8) with cell size of 100*100 ft
- One five-well pattern: 13-6 as
 production well, four injection wells
 (13-1, 13-13, 13-9, 13-10A)
- 5-year water-alternation-CO₂ injection,

and 1-year monitoring and recovery

Response surface Methodology

Independent variables (Xi)		Low (-1)	Mid (0)	High (+1)	Statistical distribution
X1	Permeability (mD)	0.33	11.07	374.97	Log-normal
X2	Anisotropy ratio (K _v /K _h)	0.1	0.55	1.0	Uniform
Х3	WAG time ratio (CO ₂ injection time/water injecation time)	1.0	1.5	2.0	Uniform
X4	Initial oil saturation	0.19	0.28	0.37	Uniform

The results of goodnessof-fit measures indicates the high accuracy of the response surface models for predictions.

Reasonable match between trained ROMs and original full-scale reservoir models suggest that the ROMs are sufficiently robust for meaningful forecasts.

The uncertainties of output variables increase over time and the significant uncertainties are propagated from parameter uncertainties.

Cumulative distribution functions (CDFs) of output responses

S

P

Risk Monitoring and Control

S

P

Risk Response Planning

- Established risk prevention and mitigation treatments for top 40 FEPs and 10 black swans.

FEP	Rankir g	Risk Prevention	Risk Mitigation	
	9	Understand the statistics (range, mean, variance, etc.) of parameters.	Periodic review of available data and simulation results . Understanding of the	
		Evaluate and select appropriate conceptual models.	varibility across the five-spot patterns, including the isolation of perforation zones in the wells.	
		Select Equations of State (EOS) by using appropriate assumptions.	Parameter calibration based on monitoring data	
		Define model domain with appropriate initial and boundary conditions.	Parameter uncertainty quantification	
Modeling and simulation - parameters	. 1	Review simulation model results for accuracy and completeness using a cross-functional team of experts.	Global sensitivity analysis of independent parameters.	
		Understand the solubility of CO2 in the oil and gas of the Farnsworth Unit with tracking oil and gas compositions at the production wells. Using this information in the simulations will greatly reduce the potential of inaccurately modeling phase behavior.		
		Reduce the parameter uncertainties by robust stochastic approaches Maintain multiple sources of CO2 . Conduct CO2 transportation uncertainty analysis.	Monitor CO2 quality.	
CO2 supply adequacy	2	Perform CO2 price variations analysis and trend prediction.	Cut back CO2 injection on some patterns or compensate with increased water injection.	
		Identify and protect/secure compressed gas/liquid lines, valve or tanks.	Maintain safety training and standard procedures.	
		Conduct HARC risk analysis on cased hole wireline operations for pressure testing lubricator for high pressure CO2 operations.	Document response to safety incidents.	
Release of compressed		Use only materials that are fit for purpose; i.e. suited for CO2 EOR service.	Maintain emergency response planning and conduct regular drills.	
gases or liquids	3	Implement safety training and standard procedures for operators.	Maintain risk management plan.	
		Conduct regular safety audits during construction and operations.	Maintain liability insurance.	
		Implement emergency response plan and risk management plan.		

Risk Identification (Risk Registry)

S

P

- Qualitative Risk Analysis
- Quantitative Risk Analysis
- Risk Response Planning
- Risk Monitoring and Control

S

P

Presentation Outline

- Introduction, Goals and Major Accomplishments (Reid Grigg)
- Technical Status:
 - Characterization and MVA (Robert Balch)
 - Simulation and Risk (Brian McPherson)
- Summary, Questions and Answers

Summary

- Project is going great!
- Baselines completed: CO₂ flux, ground water, seismic, characterization, geomodel, reservoir performance, risk, etc.
- Ongoing updates of: CO₂ flux, ground water, seismic, characterization, geomodel, reservoir performance, risk, etc.
- Characterization Wells completed
- First repeat VSP and crosswells

Summary

- Other ongoing research: fluid rock interactions, caprock integrity, risk assessment, material balance.
- Outside influences: economics of oil, ethanol, fertilizer, production/injection & general national health; weather/nature (floods, hail, wind, heat, cold, snakes, weeds, mosquitos, etc.); national policies; public perception; personnel changes (transfers, graduations, layoffs, retirements).

Risk Assessment of Net CO₂ Storage and Reservoir Pressure

At the end of CO2-EOR (left), all R and H modes predict similar results

At the end of post-EOR (middle), H1 predicts lower reservoir pressure, lower CO2 storage in oil and water phases, higher in gas phase

At the end of simulation (right), H1 predicts slightly **lower** CO2 storage in **gas** phase

Top 21 Risk- Ranked FEPs at Farnsworth (2014)

P

S

Risk Factors

	Independent Variables (Uncertain Parameters)	Dependent Variables	Comments /Suggestions
CO ₂ Storage	Reservoir properties (porosity & permeability, Kv/Kh ratio) Relative permeability (e.g. irreducible water saturation)	Amount of CO2 stored (or CO2 recovered or Net CO2stored) Early CO2 Breakthrough time	
	WAG (including well pattern and spacing, and injection rate)	CO2 Retention (or residence)	
	CO2 miscibility (e.g. minimum miscibility pressure)	CO ₂ Injectivity reduction (Net CO ₂ injection amount)	
	Boundary conditions		
	Model uncertainty (e.g. simulation of coupled processes, simulation of fluid dynamics)	CO2 storage capacity loss	
	CO ₂ impurity	- Amount of CO2 mineral trapping	
	Reservoir depth and thickness	- Mineral alteration and porosity evolution	
	Initial water, oil and gas saturations Mineralogical composition	AOR (CO2 plume size & pressure buildup)	
Oil Recovery	Reservoir temperature	Oil production	
	Reservoir pressure	Water cut (or net water injection)	
	Oil composition, gravity Oil visicosity	Gas (CH4) production	
Geomechanics	Fault density and distributions	Pressure Buildup	
	Stress and mechanical properties	Induced seismicity (seismic magnitude)	e.g. Probability of inducin earth quake of magnitude
	Coefficient of friction (fault properties)	Injection-induced faults reactivation	
	Caprock geomechanical properties		
	Mechanical processes and conditions		
CO2 Leakage	Caprock geometry (discontinuity) & heterogeneity	pH change in the overlying aquifer	
	Caprock capillary entry pressure	CO ₂ concentration or total carbon concentration	
	Initial water chemistry	Heavy metal concentration	
	CO ₂ migration (point & non-pont source)	TDS change in the overlying aquifer	
	Distributions of leaky wells	Trace metal mobilization	
		CO2 migration through caprock	
		Caprock sealing quality evolution (porosity change)	

NET

At the end of 5-year simulations, when permeability ranges from 10 to 32 mD (close to mean value), maximum oil production amount is achieved.

S

Effects of permeability on net CO_2 injection are similar in magnitude, but directly opposite to that for oil production.

Pressure next to the injection well generally decreases with increases in permeability, illustrating that reduced (lower) permeability could cause significant pressure buildup around injection wells.

The response surface of output variables in relation to the uncertain input parameters after 5 years of injections.

Global sensitivity analysis with multivariate adaptive regression spline (MARS) method

Statistical analysis of net CO₂/Water injection and Oil production

Combined Accounting and Risk Analysis

Flow chart for a statistical framework of CO₂ accounting and risk analysis for CO₂ enhanced oil recovery (EOR)