National Risk Assessment Partnership

NRAP leverages DOE's capabilities to help quantify uncertainties and risks necessary to remove barriers to full-scale CO₂ storage deployment.

Building toolsets and improving the science base to address...

- Potential impacts related to release of CO₂ or brine from the storage reservoir
 - Potential ground-motion impacts due to injection of CO₂

Technical Team

National Risk Assessment Partnership

NRAP leverages DOE's capabilities to help quantify uncertainties and risks necessary to remove barriers to full-scale CO₂ storage deployment.

Building toolsets and improving the science base to address...

By simulating risk across the entire carbon storage system; And generation thousands of realizations to quantify uncertainties.

NRAP's approach to quantifying performance relies on reduced-order models to probe uncertainty in the system.

Pacific

Los Alamos

Several NRAP products will be released for beta testers this month.

Integrated Assessment Model – Carbon Storage (NRAP-IAM-CS)

- Simulates long-term full system behavior (reservoir to aquifer/atmosphere)
- Generates risk profiles (time-lapse probability of leakage and GW impact)
- Estimates storage permanence quantitatively amidst system uncertainty
- Identifies key drivers of risk amidst system uncertainty

Reservoir Evaluation and Visualization (REV) Tool

- Generates pressure and CO₂ plumes sizes over time
- Suitable for Area of Review (AoR) determination
- Visualizes reservoir behavior probabilistically

Wellbore Leakage Analysis Tool (WLAT)

- Evaluate existing wells for leakage potential
- Explore leakage response as a function of well disposition
- Evaluate the implications of permeable overburden zones

Natural Seal ROM (NSealR)

- Estimate flux through a fractured or perforated seal
- Account for storage outside of primary target zone

www.edx.netl.doe.gov/nrap

Pacific

Los Alamos

Several NRAP products will be released for beta testers this month.

Aquifer Impact Model (AIM)

- Rapid estimation of aquifer volume impacted by a leak
- Distinguishes between impact of CO₂ and brine leaks
- Used to determine impact of threshold criteria.

Design for Risk Evaluation and Monitoring (DREAM)

- Estimate time to detection for a monitoring system
- Evaluate and select optimal monitoring designs

Short Term Seismic Forecasting (STSF)

- Forecasts seismic event frequency over the short term
- Potential to complement stoplight approach for induced seismicity planning and permitting

NRAP's integrated assessment model simulates carbon storage system behavior.

• Simulates the entire storage containment system

- Reservoir
- Wellbore and fracture flow
- Thief zones
- Groundwater aquifer
- Release to atmosphere
- Calculates probability of leak events
 - For threshold values of choice
 - Over 100s to 1000s of years
- Thousands of runs to quantify uncertainty
- Quantitative risk profiles with realistic storage conditions

Pacific

Los Alamos

Ref: Bromhal et al, IEAGHG, 2013

Many system-wide variables can be studied to determine impact on risk.

- Importance diagrams identify parameters that do and don't have an impact on leakage
- Can evaluate impacts in any part of the storagecontainment system
 - E.g., on average, leak rate depends on residual saturation
 - E.g., wellbore transmissivity statistics influence parameter ranking
- Greenfield vs. brownfield conditions influence likelihood of failure
 - Open wellbores significantly increase probability of leak

Using Science-Based Prediction to Probe Reservoir Behavior

• Size of CO₂ plume injection

- > Rate of growth for early phase
- > Rate of growth for long-term phase
- > Plume radius at end of injection

• Size of pressure plume

- > Maximum size of plume
- > Various pressure thresholds, relevant
 - > Brine rise
 - ➤ Fault-slip criteria

• Pressure at a location

> Maximum pressure increase

Los Alamos

Pacific Northwest

Phase I of NRAP will end in FY16.

- Focus has been on Risk Assessment and Uncertainty Quantification
- Major products:
 - Simulation Tools
 - Integrated and components
 - > Release of final Phase I tools in Summer 2016
 - > Methodologies
 - Series of reports/papers
 - > Addressing key questions
 - > Explaining methodologies
 - Manuals for completed tools

www.edx.netl.doe.gov/nrap

NRAP Phase II

- Focus has been on Risk Management and Uncertainty Reduction
- Begins mid-late FY16
- Key topics for Phase II:

Integration of monitoring and mitigation

>Induced Seismicity and probabilistic hazard/risk

Conformance between models and data

Thank you.

Schedule of NRAP Products Demos for this afternoon's session.

Time	Station A	Station B
5:30 – 6:00pm	Short-Term Seismic Forecasting Tool (STSF)	Reservoir Evaluation ad Visualization Tool (REV)
6:00 – 6:30pm	Designs for Risk Evaluation and Management (DREAM)	Wellbore Leakage Analysis Tool (WLAT) and Seal Leakage model (NSEALR)
6:30 – 7:00pm	Aquifer Impact Model (AIM)	Integrated Assessment Model – NRAP-IAM-CS

For more information and to become a beta tester: www.edx.netl.doe.gov/nrap

