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Benefit to the program

* Program goals being addressed:

— Develop and validate technologies to ensure 99 percent
storage permanence.

— Develop technologies to improve reservoir storage
efficiency while ensuring containment effectiveness.

* Project benefit:

— The project is also developing science basis that can be used to
assess impacts of CO, leakage in shallow aquifers and to
characterize leakage through faults. This technology contributes to
the Carbon Storage Program’s effort of ensuring 99 percent CO,

storage permanence in the injection zone(s).



Project Overview:
Tasks

Characterize multi-phase CO, flow in groundwater aquifers
through an integrated experimental-simulation approach

Characterize multi-phase CO,-brine flow through faults

Develop and apply system modeling capabilities applicable

to CCS storage operations:

 Develop capabilities that can be used to evaluate water production
and treatment for beneficial reuse: Completed

« Develop system modeling capabilities for assessment of feasibility
of long-term CO, storage at CO,-EOR sites: Not discussed here



Characterization of CO,-water
multi-phase flow




Goals & Objectives

« Understand the process of gas exsolution, gas phase
expansion and CO, migration to characterize the impacts
of CO, & CO,-dissolved water leakage in groundwater
aquifer as well as to deploy efficient monitoring/mitigation

approaches
— What factors affect the spatiotemporal evolution of CO, migration

— What role does heterogeneity play
— Data to develop theory

 Integrated approach: intermediate scale experiments (1D
column, 2D tank) coupled with numerical simulations




2-D Tank Experimental Setup
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INSTRUMENTATION MATERIALS |
« saturation sensor (EC-5) / plastic baffle scale
o saturation & temperature sensor (EC-TM) © injection well
« saturation, EC, & temperature sensor (5TE) O coarse sand (Granusil #20/30) scale
. sampling port (for measuring dissolved CO») O fine sand (Granusil #110 & 250)
- water temperature (EC-T) sensor port B clay
o external dissolved CO, (InPro 5000i) and gravel boundary (Granusil #3)
air temperature (EC-T) measurement port O headspace (air and/or CO2 gas)

« Measurements taken from sensors, flow meters and scales every minute

« Aqueous phase samples taken at various intervals and analyzed for
dissolved CO, with an lon Chromatograph



Experimental Setup

~ 2.5 months to
pack and
configure the
tank



Experimental Conditions
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Observed Dissolved CO, Migration

Normalized Dissolved CO2 Concentration
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Observed Gaseous CO, Evolution

Gas Saturation
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Macroscopic CO, Mass Balance
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Key Findings

Permeability contrast (heterogeneity) affects CO, gas phase
migration:

— Under the conditions of buoyancy-dominated flow even lower
permeability sands can help prevent upward migration of gaseous
CO,

Background flow affects the existence of free-phase CO,:
— Higher fraction of CO, in dissolved-form

Dissolved CO, plume primarily remains at the bottom

CO, remains in the water (primarily dissolved) well after
leakage stops

Important implications on monitoring and mitigation
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Numerical Model Setup: FEHM
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Simulation Results: Dissolved CO, Migration

Normalized Dissolved CO2 Concentration
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Simulation Results: Gaseous CO, Evolution

Gas Saturation
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Numerical Model Sensitivity Analysis

Lower air entry pressure
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Characterization of multi-phase
CO,-brine flow along faults
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Objectives

Activation/rupture of faults and subsequent leakage

of CO, is one of the concerns related to containment
(Zoback & Gorelick, 2012)

Using numerical simulations our objective is to

answer:

» Can the rupture be detected with pressure monitoring
in the reservoir?

» How much CO, might leak upward through the ruptured
fault before detection?

» How does the process of CO,/brine flow through the
complex fault geology evolve?



Approach

Numerical simulations using FEHM:
1. Reservoir-scale simulations of CO,/brine migration

along faults post-rupture due to overpressurization

« Scenario: activation of a critically stressed “unknown” fault

« Fault rupture process not explicitly modeled

 Permeability of fault increased in over-pressure exceeded
“critical” threshold

 Monte-Carlo simulations varying a range of parameters

2. Fault-scale simulations of reactive transport of CO,

iIn heterogeneous fault zones

« Explicitly simulate heterogeneous damage zone, fault core

« Determine impact of self-sealing driven by
depressurization, degassing, and calcite precipitation




Conceptual Model for Fault Rupture Simulations
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Details in Keating, E.H., Dai, Z., Dempsey, D.
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4163-4171.



Monte-Carlo Simulations

Variable Min Max Unit
Distance from injector to 1000 5000 m
fault
Fault width 1 50 m
Reservoir permeability -15 -12 Log (m2)
Overpressure at injection 2 15 MPa
well
Critical overpressure for 0.5 10 MPa

fault rupture

Wide range of scenarios: ~ 200 Simulations Runs
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Example Simulation Result
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Key Findings
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 |In the large majority of cases,

fault rupture is readily
detectible by rapid pressure

drop at the injection well.
> In 98% cases pressure at injection
well decreased by > 300 KPa.

There are significant delays
between rupture and CO,
plume breakthrough at base of
fault. In most cases, free-
phase CO, plume had not
reached base of fault 5 years
post-rupture.



e e e NUMerical studies of CO, and

biity CO, gas Nacl brine leakage along faults

Yo saturation concentration

Fault-scale simulations of reactive transport

of CO, in heterogeneous fault zones

« Capture effect of complexity in fault
geology: core, damage zone

» Coupled processes: multi-phase flow,
phase change, CO,/brine
dissolution/precipitation, density change

Preliminary results:

» Heterogeneity within the fault zone
affects gas phase evolution and migration

» “Self-sealing” caused by degassing and
calcite precipitation is unlikely to reduce
permeability/porosity significantly on
relevant time scales
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Accomplishments to Date

Developed system model for produced water treatment (CO,-PENS
WTM): Available for public use

Completed 1-D column experiments as well as related simulations and
1 set of 2-D tank experiments on post CO, leakage multi-phase flow in
groundwater aquifer

Developed ROM for CO, storage capacity estimation during EOR
operations

Completed study on applicability of pressure monitoring for fault rupture
detection

Initiated study on characterization of coupled processes during CO, &
brine leakage along fault capturing fault geologic complexity

[/ Peer-reviewed journal publications, 1 journal article in press, 2
journal articles under preparation (to be submitted to [JGGC)

Multiple presentations at international meetings: 2015 InterPORE, 2014
Fall AGU (2), GHGT12 (4), 2014 IEAGHG Joint Network Meeting, 2014
CCSU meeting (4), 2013 Fall AGU (3).



Synergy Opportunities

« Collaboration on groundwater leakage
characterization and impacts: NETL

* Collaboration on development of reduced order

models for estimating storage capacity during CO,-
EOR operations: EERC, Battelle, Princeton, U.
Wyoming

28



Key Findings, Future Plans

« Significant results with practical implications:
— Groundwater leakage impacts, fault rupture monitoring

« Extensive experimental data on CO,-brine leakage in 1-D columns:
available for model development and testing

Future Plans:

« Complete 2-D tank experiments with increased complexity
(heterogeneous sand packing) and associated numerical simulations:

— Data sets and parametric analysis on effect of groundwater
hydrologic parameters on CO, migration and implications on
monitoring/mitigation

« Complete fault flow characterization study to include fault complexities

— Development of relationships to calculate effective CO, leakage
rates along faults incorporating fault complexities

« Complete development of reduced order models to calculate CO,
storage capacity during EOR operations 55
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Organizational Chart

— PI: Rajesh Pawar
— Program Manager: George Guthrie
— Team Members:
« Jeri Sullivan: Water treatment system modeling
« Shaoping Chu: Water treatment system modeling

 Prof. Tissa lllangasekare (Colorado School of Mines):
CO, release experimental characterization

« Michael Plampin (Colorado School of Mines): CO,
release experimental characterization

* Mike Porter: Numerical simulation of CO, release
experiments

 Elizabeth Keating: Fault flow characterization
« Zhenxue Dai: ROM for CO, storage capacity in EOR .
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