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Benefit to the Program

= Research will develop and validate a portfolio of simplified
modeling approaches to predict the extent of CO, plume
migration, pressure impact and brine movement for a
semi-confined system with vertical layering

= These approaches will improve existing simplified models
in their applicability, performance and cost

= The technology developed in this project supports the
following programmatic goals: (1) estimating CO, storage
capacity in geologic formations; (2) demonstrating that 99
percent of injected CO, remains in the injection zone(s);
and (3) improving efficiency of storage operations



Benefit to Stakeholders

Provide project developers with simple tools to screen
sites and estimate monitoring needs

Provide regulators with tools to assess geological storage
projects quickly without running full-scale detailed
numerical simulations

Enable risk assessors to utilize robust, yet simple to
implement, reservoir performance models

Allow modelers to efficiently analyze various CO,
injection plans for optimal well design/placement



Project Overview
Goals and Objectives

Objective = Develop and validate a portfolio of
simplified modeling approaches for CO, sequestration in
deep saline formations

o Reduced physics-based modeling - where only the most relevant
processes are represented

o Statistical-learning based modeling - where the simulator is
replaced with a “response surface”

o Reduced-order method based modeling - where mathematical
approximations reduce computational burden

o Uncertainty and sensitivity analysis — to validate the
simplified modeling approaches for probabilistic applications
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Reduced Physics Based Models
Background

Useful alternative to
simulators if “macro”
behavior is of interest

Analytical models of radial
injection of supercritical

Single-phase COy 1

T'wo-phase or
Buckley-Leverett

Single-phase brine

CO, into confined aquifer7

— (@) Fractional flow model

(Burton et al., 2008;
Oruganti & Mishra; 2013)

— (b) Sharp interface model

(Nordbotten & Celia, 2008) \
Require extension for

semi-confined systems with
vertical permeability
layering (based on detailed
simulations)
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Reduced Physics Based Models
Approach (using CMG-GEM)
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Reduced Physics Based Models

Simulation Scenarios

(" )
Parameter Description Units Reference value (O)I Low value (-1) | High value (+1) Comments
V
hg Thickness of reservoir m 150 50 250
her Thickness of caprock m 150 100 200
Kavgr (Kr) Average horizontal mD 46 12 220
permeability of reservoir
Vop Dykstra-Parson’s coefficient - 0.55 0.35 0.75 Cancakes
with Kayg:r
Average horizontal
Kavgror (Ker) permeability of caprock mD 0.02 0.002 0.2
ky/Ky Anisotropy ratio - 0.1 0.01 1
q CO, Injection rate MMT/yr 0.83 0.33 1.33
L Outer radius of reservoir km 10 5 7 Correlated
with g
fr Porosity of reservoir - 0.12 0.08 0.18
for Porosity of caprock - 0.07 0.05 0.1
| Indicator for permeablllty ) Random Increasing from | Increasing from
v layering top bottom

Quantifying functional
,» relationships between variables
based on sensitivity analysis

Deriving insights into

performance metric behavio to check for robustness
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» Validating simplified model



Reduced Physics Based Models

Dimensionless Injectivity — Predictive Model
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Reduced Physics Based Models

Average Reservoir Pressure — Predictive Model

FD = f2m,, FD = fC2m,,
For a closed/ no-caprock system C depends on ratio of reservoir
f depends on relative permeability storativity to total storativity
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Reduced Physics Based Models

Storage EfflClency Predictive Model
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Reduced Physics Based Models

Sharp Interface Model Evaluation
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Statistical Learning Based Models
Background

Goal = replace physics-based
model with statistical equivalent

BB

Experimental design =
selection of points in parameter
space to run limited # of
computer experiments

Response surface =
functional fit to input-output data
to produce “proxy” models for
plume radius and reservoir S
pressure buildup

Two common options
- BOX'Behnken (BB) deSign o a
3-pt + quadratic response surface

— Latin Hypercube sampling (LHS)
multi-point + higher-order model




Statistical Learning Based Models
Box Behnken Design — Metamodeling
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= Data from 2-D GEM
simulations of CO, injection
into closed volume

= 97 run Box-Behnken design
with 9 factors
= 4 different meta-models
— Quadratic
— Kriging
— MARS
— Adaptive regression

= Cross validation using 5
mutually exclusive subsets
(78 training + 19 test data
points) with 100 replicates
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Statistical Learning Based Models
Proxy Models — Plume Radius

Plume Radius (CO2_R) (Predicted)
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Statistical Learning Based Models
Proxy Model Evaluation
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Reduced Order Method Based Models
Background (1)

Simulator

- I , Production/
ontrols ! Injection Rate

v
POD-TPWL

= Proper Orthogonal Decomposition (POD)

a Represent high-dimensional state vectors (e.g.,
pressure & saturation in every grid block) with small
number of variables by feature extraction

= Trajectory Piecewise Linearization (TPWL)

QA Predict results for new simulations by linearizing

around previous (training) simulations
17



Reduced Order Method Based Models

Background (2)
Order Nonlinearity Linear expressions
reduction treatment w/ 100s of variables
b b b
POD| + | TPWL | = | POD-TPWL

= Retain the physics of the original problem
= Overhead is required to build the POD-TPWL model
= Evaluation of POD-TPWL model takes only seconds

= Applied previously to oil-water problems for
optimization and history matching (Cardoso and
Durlofsky 2010, 2011; He et al. 2011, 2013)
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Reduced Order Method Based Models
4-Horizontal Well Problem (CO, Storage)

Idealized problem based on CO,
Storage in Mt Simon sandstone
planned for the FutureGen 2.0 site

Secondary
Confining
Zone

5

\d

4 0

' Primary
Confining

Zone
3800 M 5
4000 Injection 10
Zone
4200 A
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Reduced Order Method Based Models

POD-TPWL Performance: BHP Control for Wells
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Reduced Order Method Based Models
POD-TPWL Performance: Rate Control for Wells

Well BHP (Psia)
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(compared to full-order AD-GPRS simulation)



Reduced Order Method Based Models

POD-TPWL Performance: Geological Perturbation
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Fig. 27. CO: injection well BHPs for test case (geological perturbation example).

Results demonstrate that the approach is
able to capture basic solution trends 29




Uncertainty and Sensitivity Analysis

Problem Definition

Inputs:

Slope of CO, fractional
flow curve

Initial P, T

CO, injection rate

Time of injection
Reservoir thickness
Average porosity

Radial extent of reservoir

Reservoir permeability
anisotropy ratio

Total compressibility
Caprock thickness
Caprock porosity

Layer permeability
arrangement indicator

Models:

‘A’ — Box-Behnken fitted with
guadratic polynomial model
‘B’ — Maximin LHS fitted with
kriging model

‘C’ — simplified physics-
based models

Cumulative distribution
functions (CDFs)
evaluated for

performance metrics:

RCOZ,
A'DRavg
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Uncertainty and Sensitivity Analysis
Simplified Model Performance
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Accomplishments to Date

RPBM

Developed simplified predictive models for dimensionless
injectivity, average reservoir pressure buildup and CO, plume
migration extent (storage efficiency)

SLBM

Compared performance of different metamodeling
approaches for building proxy models

Evaluated experimental design (Box-Behnken) and sampling
design (Latin Hypercube sampling) schemes

ROMBM

Demonstrated applicability of POD-TPWL for CO, injection
into saline aquifers using a compositional simulator

Evaluated different well constraints and effects of geologic
reservoir heterogeneity
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Synergy Opportunities

— Complements discussions on model complexity by
Princeton U. vis-a-vis the limits of applicability of
simplified v/s full physics models

— Complements discussions on response surface
uncertainty analysis by U. \Wyoming vis-a-vis
various statistical techniques for model building

— Provides inputs to LANL discussion regarding use of
science-based simplified (abstracted) models in
performance and risk assessment
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Summary

« Successful development of simplified predictive
models for layered reservoir-caprock systems

o Reduced physics models for injectivity and plume radius

o Improved proxy modeling workflow using BB/LHS
designs

o Application of POD-TPWL scheme to CO,-brine
systems

 Benefits to stakeholders

o Site developers, regulators = simplicity, limited data

o Modelers, risk assessors = computational efficiency
27



Appendix

These slides will not be discussed during the
presentation, but are mandatory

28



Organization Chart
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Gantt Chart
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3.2 Computer simulations
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5.1 Problem definition

5.2 Probabilistic simulation

5.3 Analysis of results
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