

Utilization of CO₂ in High Performance Building and Infrastructure Products DE-FE0004222

DOE NETL Carbon Storage
Pittsburgh, PA
August 18-20, 2015

Do not copy or distribute: Proprietary and confidential information of Solidia Technologies, Inc.

Solidia CementTM Chemistry

Oxide	Portland Cement (wt.%)	Solidia Cement (wt.%) example
CaO	60 - 67	43
SiO ₂	17 - 25	45
Al_2O_3	3 - 8	6
Fe ₂ O ₃	0.5 - 6.0	2.5
MgO	0.5-4.0	2.0
Alkali-oxide (Na, K)	0.3 - 1.2	1.0

Mineral phases CaSiO₃ and Ca₃Si₂O₇ will react with CO₂

Solidia Cement is a *low-lime alternative* to ordinary Portland cement

CO₂-Curing of Solidia Concrete[™]

CaCO₃ in Solidia Concrete acts in a manner similar to that of C-S-H gel in Portland cement concrete

CO₂ Footprint Comparison

Portland Cement Concrete vs. Solidia Concrete

	Portland Cement Concrete	Solidia Concrete	Note
a. CO ₂ emitted/t of cement made	0.81 t	0.56 t	0.25 t of CO ₂ emissions avoided at cement plant
b. CO ₂ captured/t of cement used	0.00 t	0.25 t	0.25 t of CO ₂ captured at concrete plant
c. Total CO ₂ footprint/t of cement used (a-b)	0.81 t	0.31 t	0.50 t of CO ₂ "saved"

DE-FE0004222 Program Status

Technical Evaluation (Task 3.0)

→ Complete 6/2014

Demonstration of Solidia Cement Produced at Commercial Cement Plant (Subtask 4.1)

→ Complete 12/2014

Demonstration of Solidia Concrete Utility in Commercial Concrete Products (Subtask 4.2)

→ Complete 6/2015

Implement CO₂-Curing At Commercial Concrete Plant (Subtask 4.3)

→ In Progress

Description of Concrete Curing System

Company: Paver and Block Manufacturer #2

Plant Location: New Jersey Cement Usage: 25,000 t/yr

Target Product: Vibro-cast Concrete Pavers

Curing System consists of 18 bays:

Each bay;

- 5 ft. x 17 ft. x 75 ft.
- 240 boards
- 25 to 60 t concrete

Construction

- Roll down doors
- Sheet metal walls
- Not sealed

No internal ducting

Concrete Plant Conversion Process

- Gas Flow and Distribution Within the Curing Bay
- Bay Preparation and Sealing
- Ductwork Design and Installation
- Door Fabrication and Installation
- Gas Conditioning System
- Other Site Preparation
- Carbon Footprint Calculation

Gas Flow Distribution Within the Bay

Objective:

Achieve uniform temperature, relative humidity and CO₂ concentration throughout curing bay.

Challenge:

Bay interior is divided into 14 distinct levels by solid boards bearing concrete parts.

- Construct computational fluid dynamic (CFD) model of fully loaded bay interior
- Define interior duct and inlet design
- Defines blower, heat exchanger capacity

Bay Preparation and Sealing

Objective:

Prevent CO₂ leakage during CO₂-curing.

Challenge:

Bay walls are constructed from sheet metal / fiberboard panels, and contain multiple ports.

- Seal large gaps
- Coat bay interior
- With material that is impermeable to CO₂

Ductwork Design and Installation

Ducts fabricated from sheet steel as per CFD design

Door Fabrication and Installation

Door

Objective:

Replace roll-down door with solid metal door to prevent CO_2 leakage.

Challenge:

Concrete is placed within curing bays by robotic loading mechanism, limiting access to bay front.

- Store doors in magazine mounted aside bays.
- Move and lower door onto bay front via trolley mechanism.

Gas Conditioning System

Heat Exchanger, CO₂ Addition, Condenser Heater, Blower,

Objective:

Feed warm, dry CO₂ into curing bay and recondition wet CO₂ exiting curing bay.

Challenge:

Low cost, energy efficient system to achieve the above. Dehumidify at high rates early in process

- Cross flow heat exchanger, water cooled chiller (to store energy from exit gas, dehumidify gas, and recapture energy prior to heater/blower)
- Electrical or gas fired heater
- High capacity blower

Other Site Preparation

Concrete Pad for CO₂
Storage Tank

Dedicated Silo for Solidia Cement

Site / US CO₂ Footprint

Plant Conversion	Tons of Portland Cement replaced by Solidia Cement	CO ₂ "saved" per ton of cement	Total CO ₂ "saved"	When
5% (1 bay)	1,250	0.50	625 t	2016
50%	12,500	0.50	6,250 t	2018
100%	25,000	0.50	12,500 t	2020

- Startup at Paver and Block Manufacturer #2 scheduled for 9/2015
- If applied to all precast concrete in US......
 - 20% of concrete production ~ 20 million tons of cement
 - ~10 million tons of CO₂ can be "saved"

Appendix

Operating Logic

Full Plant Conversion

Operating Logic

Operating Logic

Curing Chambers

Operating Logic

Curing Chambers

Full Plant Conversion

Operating Logic

Curing Chambers