Development of Swelling-Rate-Controllable Particle Gels to Enhance CO₂ Flooding Sweep and Storage Efficiency

Project No. DE-FE0024558

Baojun Bai

Missouri University of Science and Technology

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Transforming Technology through Integration and Collaboration
August 18-20, 2015

Presentation Outline

- Benefit to the Program
- Project Overview: Goals and Objectives
- Methodology
- Expected Outcomes
- Task/Subtask Breakdown
- Milestones
- Summary
- Appendix

Benefit to the Program

- Program goals being addressed
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Project benefits statement
 - The research project is to develop novel environmental friendly swelling-rate-controllable particle gels to improve CO₂ sweep and storage efficiency. The new materials will overcome some distinct drawbacks inherent in the in-situ gels that are traditionally used for conformance control. The technology, when successfully demonstrated, will provide a novel cost-effective technology to the Carbon Storage Program's effort of improving reservoir storage efficiency while ensuring containment effectiveness.

Project Overview:

Goals and Objectives (1)

 Overall Goal: to develop a novel particle-based gel technology that can be used to enhance CO₂ sweep efficiency and thus improve CO₂ storage in mature oilfields.

Project Objectives:

- To synthesize a series of environmental-friendly and swelling-rate-controllable particle gels for CO₂ conformance control.
- To understand the transport behavior and mechanisms of the particle gels in different high permeable features.
- To understand the plugging mechanisms of particle gels for different types of reservoir problems.

Project Overview: Goals and Objectives (2)

Relevance to Program Goals

 Novel materials will improve CO₂ storage efficiency while ensuring containment effectiveness.

Success criteria

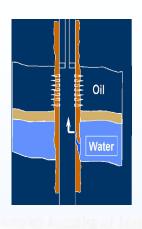
- Swelling Rate of particle gels
- Thermo-stability of particle gels in CO₂
- Plugging Efficiency of particle gels
- Successful delivery of particle gels into target locations
- New mechanistic models to characterize particle propagation.

Methodology

We will manage and carry out the project to develop and test novel particle gels with particle sizes ranging from nano- to milli-meter diameters, including

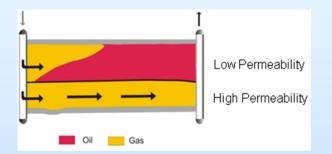
- Bench-scale synthesis and characterization of the particles.
- Analyze experimentally the performance of these gels by conducting core flooding tests.
- Develop a mathematical model which will characterize particle gel behavior in various porous media.

The project involves research efforts in the area of material synthesis and a series evaluation work in lab, including the rheology properties of particle gels and their thermo-stability at a supercritical fluid under reservoir conditions, core flooding tests using different porous media models.

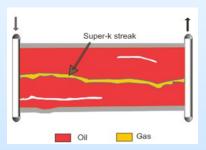

Conformance Problem Classifications

Wellbore Problems

- Flow behind casing
- Casing leaks

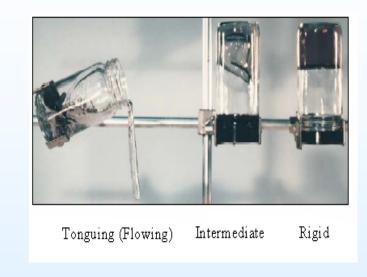

High-permeability matrix-rock strata without crossflow

^ Flow behind casing.


Water zone

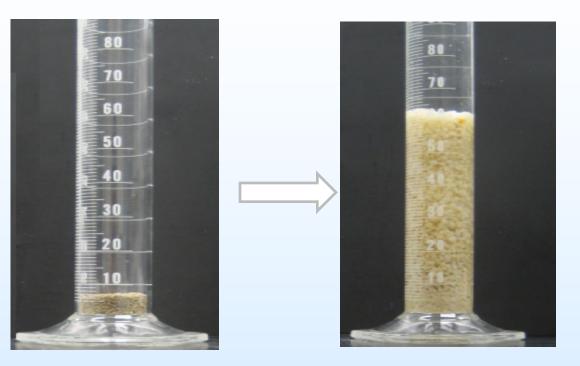
Far-wellbore Reservoir Problems

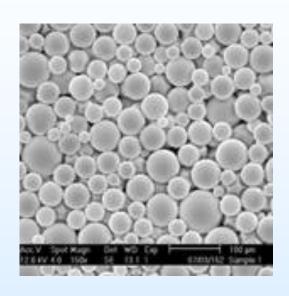
(a) Overriding and reservoir strata with crossflow


(b) High permeability streaks

(c) Fracture channeling

(d) Solution channels


Gels Used for Conformance Control


 In-situ gel systems: Gelant is injected into formation and gel is formed under reservoir conditions after placement. Gelation occurs in the reservoir.

 Preformed gel systems: Gel is formed in surface facilities before injection, and then gel is injected into reservoirs. No gelation occurs in a reservoir.

Preformed Particle Gel (PPG)

(a) Before swelling (b) After swelling

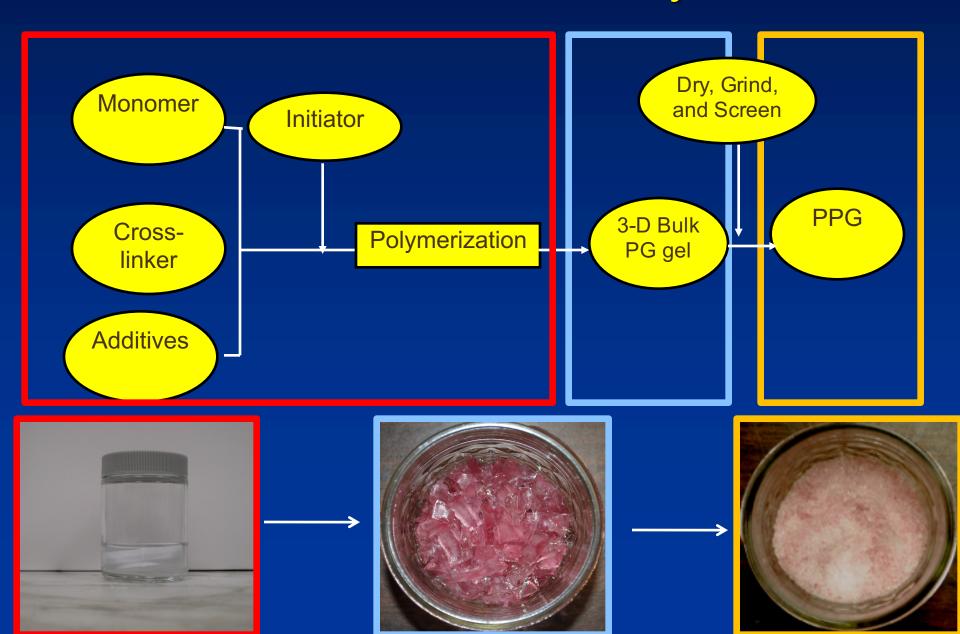
Cross-linked polyacrylamide powder, Super Absorbent Polymer Size ranging from nano-meter to millimeter

Advantages Preformed Particle Gels over In-Situ Gels

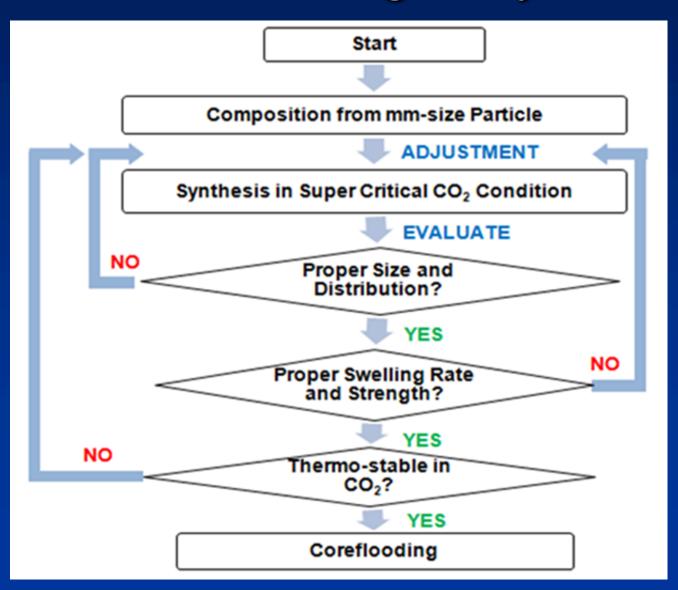
Inherent disadvantages of In-Situ Gel

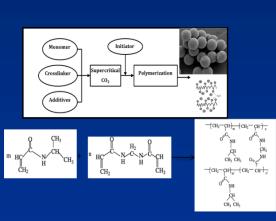
Crosslinking reactions and gel quality are strongly affected by

- Shear of pump, wellbore and porous media
- Adsorption and chromatography of chemical compositions
- Dilution of formation water
- Particle thermo-stability is not very sensitive to formation water salinity
- Single component and easy operation in oilfields


Expected Outcomes

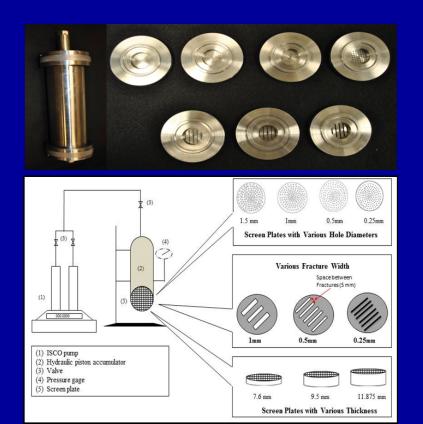
- Develop a novel particle-based gel technology that can be used to enhance CO₂ sweep efficiency and improve CO₂ storage efficiency in mature oilfields, including
 - Synthesize novel environmental-friendly and swelling-ratecontrollable preformed particle gels with particle sizes ranging from nanometer to millimeter level.
 - Understand the transport behavior and plugging mechanisms of the particle gels in different type of high permeable features.
 - Develop methods to deliver and place the particle gels in target areas.
 - Develop mathematical models to predict the transport of particles through porous media.
 - Provide the criteria of well candidate selection.


Task/Subtask Breakdown (1)

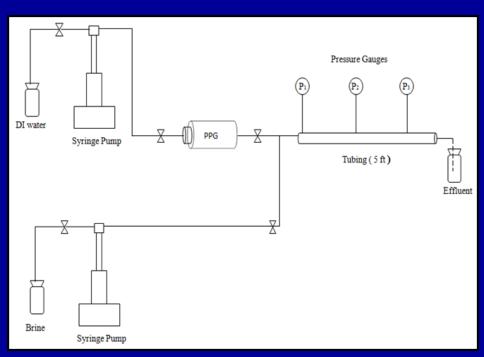

- Task 1.0. Project management, planning, and reporting.
- Task 2. Synthesis and characterization of particle gels
 - Subtask 2.1 Micro- to millimeter sized particle gels synthesis and evaluation
 - Subtask 2.2 Nanoparticle gels synthesis and evaluation

Millimeter-sized Particle Synthesis

Nano-gel Synthesis



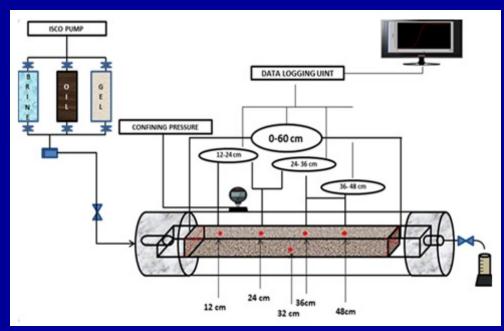
Task/Subtask Breakdown (2)

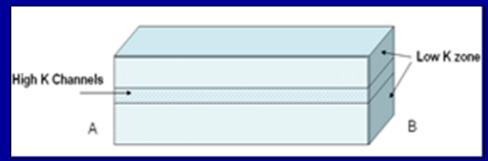

- Task 3. Transport behavior of particle gels through different types of porous media and their plugging efficiency to supercritical CO₂ fluid.
 - Subtask 3.1 Develop criteria for particles passing through pore throats and open fractures
 - Subtask 3.2 Conduct core-flooding tests to understand the effect of particle gels on CO₂/water/oil flow
 - Subtask 3.3 Delivery of nano-gels for In-depth placement
 - Subtask 3.4 Development of mechanistic mathematical models based on experimental results

Models for Core Flooding Tests

Screen models for

- Passing ratio
- Gel strength
- Threshold pressure


Conduits models


- Open channels
- Closed Channels

Models for Core Flooding Tests

Sandpack models (Loose sand, hydraulic fractures)

Core Flooding with Multiple Pressure taps (Consolidated formation)

Proposed Schedule

Technical Tasks		Year 1				Year 2				Year 3			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
1.0 Project management and planning													
and reporting													
2.0 Synthesis and characterization of													
particle gels													
2.1 Synthesis and characterization of													
micro- to millimeter-sized particle gels													
2.2 Synthesis and characterization of													
CO ₂ -based polymer network nano-													
particle gels at supercritical CO ₂ fluids													
3.0 transport behavior of millimeter-													
sized particle gel through fractures or													
fracture-like channels and their													
plugging efficiency to supercritical CO ₂ fluids													
3.1 develop criteria for particles passing													
through pore throats and open fractures													
3.2 conduct core-flooding tests to													
understand the effect of particle gels on													
CO ₂ /water/oil flow													
3.3 deliver nano-particle gels for in-depth													
placement													
3.4 develop the mathematical models													
Project Report	QR	QR	QR	QR	QR	QR	QR	QR	QR	QR	QR	FR	

Milestones

Task/ Subtask	Milestone Title	Planned Completion Date	Verification method		
1.0	Project Management Plan		PMP file		
1.0	Kickoff Meeting	08/18/15	Presentation file		
2.1	Synthesize large size (10 µm-mm) swelling delayed particle and compete characterizations	09/30/16	Summary report or presentation file		
2.2	Synthesize nano- and micro-sized swelling delayed particle and compete characterizations	09/30/17	Summary report or presentation file		
3.1	Develop criteria for particle passing through pore throats and fractures	09/30/16	Presentation file		
3.2	Understand the effect of particle gel on water/oil/CO ₂ flow	09/30/17	Summary report or presentation file		
3.3	Understand nano-particle transport mechanisms through porous media	09/30/18	Summary report presentation file		
3.4	Develop mathematical models to characterize particle flow behavior	09/30/18	Summary report or presentation file		
Papers	Publish at least 3 peer-reviewed papers	09/30/18	Accepted or published papers		
Presentations	Make at least 4 presentations in conferences	09/30/18	Presentation files		
Final Report		09/30/18	Report 19		

Summary

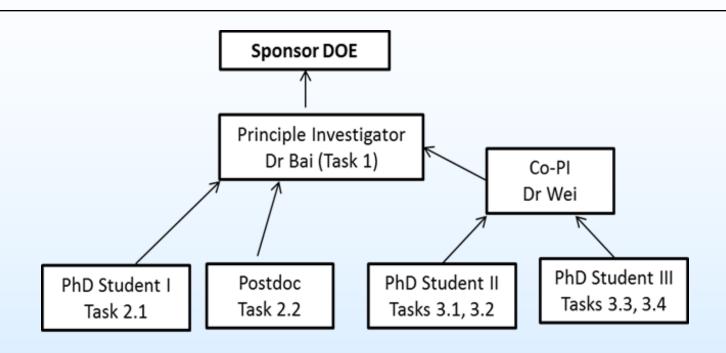
- Benefit to the Program
- Project Overview: Goals and Objectives
- Methodology
- Expected Outcomes
- Task/Subtask Breakdown
- Milestones

Acknowledgement

- Department of Energy
- Sponsor office of Missouri University of Science and Technology

Appendix

- Deliverables
- Decision points
- Organization Chart
- Risk Analysis
- Synergy Opportunities


Deliverables

- Project Management Plan.
- Project Fact Sheet
- Data Submitted to NETL-EDX. Will include:1) various datasets and files as appropriate, 2) metadata, 3) software/tools, and 4) articles developed as part of this project.
- The periodic, topical, and final reports
- Website to house all of the quarterly updates, annual reports, and presentations for interested parties.

Decision Points

Phases	Success Criteria
Phase 1 (06/15/15 – 09/30/17)	 The synthesized particle gels should be thermo-stable in supercritical CO₂ for more than 6 months. The swelling rate of synthesized particle gels can be controlled from a few hours to up to a few months. The nano-particle gels can transport through common porous media. The new particle gels can reduce CO₂ permeability in fractures, fracture-like channels and high permeability rocks and their plugging efficiency should be high than 90%.
Phase 2 (10/01/17– 09/30/18)	 The transport mechanisms of nanoparticle through porous media can be understood. New mechanistic models will be obtained through lab data analysis.

Organization Chart

PI: Baojun Bai

Co-PI: Mingzhen Wei

Senior investigator: Dr Lizhu Wu

Technician: Ninu Maria

Graduate Students

Mr. Jingyang Pu

Ms. Xindi Sun

Mr. Yifu Long

Risk Analysis

- Technical risks-Low risk
 - Particle gel thermo-stability under CO2 conditions
 - Delivery of nano-particle into the in-depth of a reservoir
- Environmental, health, or safety issues:
 - Control residual monomer amount in final products
- Resources and management issues
 - University support structure and PI experience in project management

Synergy Opportunities

- A better reservoir characterization will help to identify conformance problems, which is necessary to optimize a gel treatment design.
- Understanding reservoirs helps design a better particle gel for conformance control