Area of Interest 1: Geomechanical Research

Development of Geomechanical Screening Tools to Identify Risk: An Experimental and Modeling Approach for Secure CO₂ Storage

DE-FE0023314

Dr. Mary F. Wheeler

The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Outline

Benefit to the Program

Goals and Objectives

Technical Status from Tasks 2 to 6

Accomplishments to Date

Synergy Opportunities

Benefit to the Program

Develop a Geomechanical Screening Tool to Identify Risk

Experimental & Modeling Approach for Secure CO₂ Storage

Project Overview: Goals and Objectives

Develop a screening tool for improved understanding of geomechanical effects associated with CO₂ injection

□ Derive a workflow from experimental and computational studies conducted for specific CO₂ sites, e.g. Frio, Cranfield

Task 1 Project management (M.F. Wheeler-lead)

Task 2 Conduct laboratory experiments for hydro-mechanical rock properties (N. Espinoza–lead)

Task 3 Upscale to bridge from laboratory to field scales (M.F.W.–lead)

Task 4 Extend simulator capability to model CO₂ storage field scale studies (M. Delshad–lead)

Task 5 Perform parameter estimation & uncertainty quantification (M.F.W.-lead, S. Srinivasan-consultant)

Task 6 Integrate results to generate geomechanical screening tool / workflow (M.F.W.-lead, S.S.-consultant)

Model Field Sites

Large Axisymmetric Triaxial Frame

ø 4 in

- 140 MPa (20 ksi) confining/pore pressure
- Ultrasonic monitoring
- Local strain measurement
- Strain/pressure control
- Temperature up to 150°C (300°F)
- Connected to CO₂ ISCO pumps

Rock Samples

Fluvial Oligocene, poorly consolidated Courtesy S. Hovorka (DE-AC26-98FT40417) Cretaceous, chlorite/quartz cemented BEG-UT Austin Core Research Center

Outcrop : Castlegate Sandstone

 Cretaceous Mesaverde group, cemented by calcite. This sandstone is attractive for testing because it can serve as an end-member due to weak cementing bonds presumably susceptible to CO₂ alteration. Available in several sizes from commercial vendors.

Planned Tests

Basic Rock Properties						
Dry conditions	Saturated with water					
 Mineralogy (XRF) Drained mechanical moduli Elastic nonlinearity Mechanical anisotropy Shear and tensile strength Fracture toughness Creep 	 Porosity Absolute permeability Biot's coefficient Thermal expansion coefficient Thermal conductivity Specific heat 					

Advanced Rock Properties							
Fluid flow properties with a CO ₂ phase	Mechanical						
Capillary pressure	Transition brittle to ductile						
Relative permeability	Strain localization						
Chemo-mechanical coupling	Scale effects						
Porosity change with chemical dissolution	Thermo-mechanical coupling						
Permeability change with chemical dissolution	Thermal induced stress						
Chemically enhanced creep	Poro-mechanical coupling						
Stress relaxation with chemical dissolution	Stress sensitivity of permeability						

Obj	ectives	Upscale measured rock properties (relevant to field processes (M.F. Wh	fluid flow & geomechanics) to scale neeler–lead)
+	combinin	ment of homogenization schemes g numerical and analytical nes, e.g. multiscale mortar method	$\int_{z_{2}}^{\sigma_{33}} p_{c} p_{c}$ $\int_{z_{2}}^{\sigma_{22}} \left[\underbrace{\sigma}_{z} = \underbrace{c}_{z} - \alpha p_{c} I \right]$
•	natural f	r emphasis will be put on including ractures in effective properties and on effects	$\sigma_{11} \begin{cases} \underline{\sigma} = C \\ \underline{\varepsilon} = -\alpha p_c I \\ \varphi = p_c / N + \alpha \varepsilon_v \end{cases}$
Ļ	perform	eld scale constitutive parameters to coupled fluid flow and hanical numerical simulation	

• Task 3.0: Upscale to Bridge Laboratory to Field Scales

Homogenization	Simulator Development
<text><list-item></list-item></text>	<text><list-item><list-item> MFDFrac: developed using mimetic finite differences Sample fracture realizations from parameterized space Generate unstructured polyhedral meshes based on fracture geometries </list-item></list-item></text>

Homogenization for Upscaling: Methodology

Choice of Unit Cell Model

- Darcy's law for unit cell (mesoscale) and field (macroscale) problems
- Characteristic length scales: $L_{unit}/L_{reservoir} = \epsilon \ll 1$
- Solve an auxiliary unit cell problem to obtain effective permeability
- Use different unit cell models in different domains (sands A, B, C, etc.) for characterizing reservoir heterogeneity

• Homogenization for Upscaling: Methodology

Choice of Unit Cell Model

- Auxiliary Unit Cell Problem $-\nabla \cdot \left[K(y) \left(\nabla w_j + \overrightarrow{\mathbf{e}_j} \right) \right] = 0$ in Y $w_i = 0$ on ∂Y
- Effective Permeability

$$K_{eff} = \frac{1}{|Y|} \int_{Y} K(y) \left[\nabla w_{i} + \overrightarrow{\mathbf{e}_{i}} \right] \cdot \left[\nabla w_{j} + \overrightarrow{\mathbf{e}_{j}} \right] dy$$

• Homogenization for Upscaling: Application to Frio Field, TX

• Homogenization for Upscaling: Application to Frio Field, TX

Reservoir Characteristics	Permeability in C Sandstone
 Reservoir Characteristics Sandstone reservoirs Periodic deposition due to flooding of river beds Shale layer marks the end of one deposition cycle Idealize as a periodic porous medium 	5040 5060 5060 1545
 Identify meso-scale periodicity from well log data Characterize period ✓ High permeability & Low permeability Solve local period problem to estimate up-scaled field scale permeability 	(t) t) t) t) t) t) t) t) t) t)

Task 4: Simulator Development

Task 4: Simulator Development

• Geomechanical Effects of CO₂ Injection with a Poro-plasticity Model

Fluid Flow	$\frac{\partial(\rho(\phi_0 + \alpha\varepsilon_v + \frac{1}{M}(p - p_0)))}{\partial t} + \nabla \cdot \left(\rho \frac{K}{\mu}(\nabla p - \rho g \nabla h)\right) - q = 0$						
Stress Equilibrium	$\nabla \cdot (\sigma'' + \sigma_o - \alpha(p - p_0)I) + f = 0$						
Hooke's law	$\sigma'' = D^e : (\varepsilon - \varepsilon^p)$	Druker-Prager Yield Surface					
Strain-Displacement Relation	$\varepsilon \;=\; \frac{1}{2} (\nabla u + \nabla^T u)$	σ_2					
Plastic Strain Evolution	$\begin{split} \dot{\varepsilon}^p &= \lambda \frac{\partial F(\sigma'')}{\partial \sigma''}, \text{at } Y(\sigma'') = 0\\ \dot{\varepsilon}^p &= 0, \text{at } Y(\sigma'') < 0 \end{split}$						
Yield and Flow Functions	$Y = q + \theta \sigma_m - \tau_0$ $F = q + \gamma \sigma_m - \tau_0$	σ_3 σ_1					

Task 4: Simulator Development

• Preliminary Poro-plasticity Results with Application to Cranfield, MS

Pore Pi	ressure	Vertical Displacement	Volumetric Plastic Strain				
PCL		DISPX 4220-02 0.04 0.03 0.02 0.01 0.0000+03	VPSTRAIN 5581e04 0.0012 0.0004 2.0024 2.686e-03				
Mechanica	l Properties	Next Steps: Geometr	y and Heterogeneity				
<i>E</i> 375,581 psi		Our findings show that					
v	0.25	at normal CO ₂ pressure					
a	1.0	injection range rock	PORO 0.38 0.38 0.34				
1/ <i>M</i>	1e-6 / psi	formation may yield.					
$ au_0$	1,600 psi		02 02 01 01 01 01 01 01 012				
θ	0.6						

	True Log(ky), Layer 1
Complex relationship betw physics attributes is honor	een the multi-
Residual uncertainty in pre migration of the CO2 is fai	40 Day a Obs-2 lite-1 pay 4

• Process of History Matching: Combination of Tasks 2 to 5

History Matching Coupled w/ Level-Set, MFDFrac, and EnKF

• Matching Results: Water Saturation for Initial & Final Realizations

Matching Results: Observed and Predicted Production Profiles

- Observed data from the reference field
- 100 realizations before updating
- 100 realizations after updating
- Average of 100 realizations

• Quarter Wellbore Model: Flow & Geomechanics Equation

Assumption

- Assume a linear, elastic, homogenous, and isotropic porous medium
- The reservoir is saturated with a slightly compressible viscous fluid
- Quasi-static Biot model to obtain mechanical displacements

Geomechanics Equations

Balance of Linear Momentum: $-\operatorname{div} \boldsymbol{\sigma}^{\operatorname{por}}(\boldsymbol{u}, p) = \boldsymbol{f} \quad \operatorname{in} \Omega \setminus C$ Cauchy Stress Tensor: $\boldsymbol{\sigma}^{\operatorname{por}}(\boldsymbol{u}, p) = \boldsymbol{\sigma}(\boldsymbol{u}) - \alpha p \boldsymbol{I}$ Effective Linear Elastic Stress Tensor: $\boldsymbol{\sigma}(\boldsymbol{u}) = \lambda(\nabla \cdot \boldsymbol{u})\boldsymbol{I} + 2 G \boldsymbol{\varepsilon}(\boldsymbol{u})$

- ullet I is the identity tensor , $oldsymbol{u}$ is the solid's displacement , p is the fluid pressure
- lpha>0 is the Biot coefficient , $\lambda>0$ and G>0 are the Lamé constants
- *f* is a body force (gravity loading term)

• Quarter Wellbore Model: Flow & Geomechanics Equation

Assumption

- Assume a linear, elastic, homogenous, and isotropic porous medium
- The reservoir is saturated with a slightly compressible viscous fluid
- Quasi-static Biot model to obtain mechanical displacements

Geomechanics Equations

$$\frac{\partial}{\partial t} \Big(\Big(\frac{1}{M} + c_f \varphi_0 \Big) p + \alpha \nabla \cdot \boldsymbol{u} \Big) + \nabla \cdot \boldsymbol{z} = \tilde{q} \text{ in } \Omega \setminus \mathbf{C},$$
$$\boldsymbol{z} = -\frac{1}{\mu_f} \boldsymbol{K} \Big(\nabla p - \rho_{f,r} g \nabla \eta \Big) \text{ in } \Omega \setminus \mathbf{C},$$

- ullet p and $oldsymbol{z}$ represents the pressure and flux unknowns
- $\mu_f > 0$ represents the constant fluid viscosity
- $\rho_{f,r} > 0$ is a constant reference density (relative to the reference pressure p_r)
- φ_0 is the initial porosity , $\alpha \Rightarrow$ (coupling term)
- M is the Biot constant , $ilde{q}=rac{q}{
 ho_{f,r}}$ where q is a mass source or sink term

• Quarter Wellbore Model: Iterative Algorithm using Multi-rate Time Step

• Quarter Wellbore Model: Accumulated Number of Mechanics

Simulation Time vs. Iterations

Figure: Multirate coupling with two flow finer time steps (q = 2), within one coarser mechanics time step results in 44.2% reduction \downarrow in total number of **mechanics** linear iterations. Multirate couplings (q = 4), (q = 8) results in 69.2%, 83.5% reduction \downarrow in total number of **mechanics** linear iterations respectively.

Accomplishments to Date

- Set up of experimental studies on homogenization in Tasks 2 and 3
- Site characterization initiated in Tasks 2, 3, and 4
- Preliminary results from the advanced flow and geomechanics model in Tasks 3, 4, 5, and 6

Synergy Opportunities

Assistance in Decision Making

 Assist in selection of suitable sites for safe CO₂ storage using generalized S/Ws based on a posteriori knowledge

Interdisciplinary Collaboration

 Enhance understanding of the effects of CO₂ migration on open and closed faults and fractures

Training & Education

Support training and education of students who will take part in an interdisciplinary work, e.g. IPARS tutorial

Contribution to Identifying Geological Risk for Secure CO₂ Storage!

Summary

Developing a generalized geomechanical screening tool Preliminary outcomes from interdisciplinary collaboration Homogenization / Poro-plasticity / Level-set / MFDFrac / Ensemble-based calibration / Multi-rate fixed stress split Achievement ahead of milestone

Acknowledgements

Thank you for your attention

Contact: mfw@ices.utexas.edu

Organization Chart

Project Director										
M.F. Wheeler										
Task 1Task 2Task 3Task 4Task 5Task 6										
Management	agement Laboratory Bridging Modeling an		Modeling and	Uncertainty	Integrate					
	Program	between	Field Studies	Quantification	Results to					
		Laboratory and		and Parameter	Generate					
		Field Scales		Estimation	Geomechanical					
					Screening Tool					
					/ Workflow					
Task Leader	<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>	<u>Task Leader</u>					
M.F. Wheeler	N. Espinoza	M.F. Wheeler	M. Delshad	M.F. Wheeler	M.F. Wheeler					
Key Personnel	<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>	<u>Key Personnel</u>					
M. Delshad	M.F. Wheeler	S. Srinivasan	M.F. Wheeler	M. Delshad	M. Delshad					
S. Srinivasan	M. Delshad	N. Espinoza	N. Espinoza	M.F. Wheeler	S. Srinivasan					
N. Espinoza	¹ / ₂ Postdoc	¹ / ₂ Postdoc	¹ / ₂ Postdoc	1 Student	N. Espinoza					
	1 Student	1 Student	1 Student (Y 3)	S. Srinivasan	Postdoc					
	(Y 1&2)			(Consultant)	Student					

Gantt Chart

Task		Sep. 2014 - Aug. 2015			Sep. 2015 - Aug. 2016			Sep. 2016 - Aug. 2017					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
T1	Management		А, В										
T2	Laboratory Experiment			С	D		E		F	G			
Т3	Upscale from Lab. to Field								н		I		
T4	Simulator Development				J				к	L		М	
Т5	Uncertainty Quantification								N				ο
Т6	Integrated Geo- Screening Tool												Ρ
	A to P : Milestones					Sche	dule			Acco	mplish	nment	

IPARS

Integrated Parallel Accurate Reservoir Simulator (IPARS)

- > Workhorse for multiphysics, parallel, field scale simulations
- Coupled geomechanics, flow, reactive transport and thermal models
- Fractured reservoirs: hydraulic and natural fracture treatment
- Advanced well models: horizontal and deviated wells

