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Benefit to Program

e Geomechanical Research

Applied to Wallula Basalt Sequestration Pilot Project
— Goal: Improve understanding of reservoir geomechanics

— Goal: 99% storage permanence

» Approach: Monte Carlo numerical simulation to assess the
probability of tensile, shear, and breakdown failure within
reservoir rock and overlying formations at Wallula site.

— Goal: Improve accuracy of existing models to understand
impacts of increasing P;on reservoir permeability

» Approach: Core-flood experiments to determine multi-phase fluid
properties of variably saturated CRBG rock & measure stress-
dependent permeability changes with increasing P
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Benefits Statement

In pursuing this research, we consider (1) reservoir permeability is a first-order control on injection
pressure accumulation during CO, injections, and (2) the spatial distribution of in situ CRBG fracture
distributions is a priori unknowable at the scale of interest for industrial CCS operations (except within
recovered drill cores). To address the relationship between injection pressure accumulation and
reservoir permeability, we propose a series of core-flood experiments to measure relative permeability,
gas-phase entry pressure, and stress dependent permeability in variably saturated (CO, and brine)
basalt samples under reservoir conditions. These experimental results will be used as input parameters
for Monte Carlo numerical models of CO, injections under three industrial-scale scenarios: (1) a 37 MW
biomass fueled electrical generator, which is the proposed deployment scenario at the Wallula Site; (2) a
500 MW natural gas-fired power plant; and (3) a 1,000 MW natural gas-fired power plant. The Monte
Carlo numerical models for each injection scenario are comprised of 100 equally probable synthetic
reservoirs constructed such that fracture-controlled reservoir heterogeneity is the random variable, and
borehole data from the the Wallula Site are explicitly reproduced in each reservoir domain. By combining
the ensemble statistics from each Monte Carlo run (mean and variance of grid cell fluid pressure) with
the in situ stress field in southeast Washington State, this project will result in a risk assessment of
geomechanical reservoir failure for each of the proposed CCS scenarios. Successful completion of this
project will directly contribute towards the Carbon Storage Program Goal “to improve reservoir storage
efficiency while ensuring containment effectiveness” by addressing three of the six Geological Storage
Technologies and Simulation and Risk Assessment (GSRA) Key Technologies: (1) fluid-flow, pressure,
and water management; (2) geomechanical impacts; and (3) risk assessment. Moreover, this project will
resultin a generalizable and transferable risk assessment strategy for CCS deployment in basalt
interflow zones, the result of which may compliment the NETL Best Practices for: Risk Analysis and
Simulation for Geologic Storage of CO.,.
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Project Overview:
Goals and Objectives

* Project Goals
— Produce a probabilistic assessment of geomechanical

reservoir integrity at the Wallula Basalt Sequestration Site.
» Test CO, injection scenarios with Monte Carlo numerical simulation
— 37 MW biomass fueled electrical generator — proposed deployment scenario
— 500 MW & 1000 MW natural gas-fired electrical generators

— Program goal: Understand and assess the geomechanical behavior of of
increased reservoir pressure on fractures, faults, and sealing formations.

— Program goal: 99% storage permanence
— Develop a mechanistic model for predicting stress-

dependent reservoir properties in CRBG basalt rock.

» Core-flood experiments to measure relative permeability, capillary
pressure, and permeability as a function of effective stress.
— Incorporate results into Monte Carlo numerical simulations

— Program goal: Improved accuracy of existing models Stanford
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Technical Overview

« Geomechanical analysis for Slack Canyon #2 Flow Top
— Borehole breakdown pressure (Pp)
— Mohr failure envelope for intact rock mass

* Investigate k., parameter space with numerical simulations
— Evaluate simulated P against failure criteria

« Core-flood experiments to assess reactivity
— Permeability & porosity
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Site Map & Stress in SE Wash.
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Reservoir Failure Criteria

Breakdown Pressure (P,) Mohr Failure
Strength envelope for basaltic rock
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Numerical Model Setup

Simple 1D model to learn how k., parameters influence P;
TOUGHS3 (beta) with ECO2N equation of state
Properties from Wallula Site Characterization Report
10% of proposed CO, mass into Slack Canyon #2 flow top
High resolution grid (Ar = 1 mm) near well
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Relative Permeabillity
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Test variability in k.., to P,

Set up van Genuchten (1980) relative permeability model
to cover range of existing k.., data
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Test variability in k.., to P,

Simulate CO, injection into Slack Canyon #2 flow top over
399 unique combinations of A and S,
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Injection Pressure Response

Residual CO» Saturation (Sgr)

Below breakdown across ~2/3 of parameter space.
K., strongly influences injection pressure magnitude.
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Mohr Failure in Far-Field

Mohr failure only for most restrictive parameter sets.
(at 87,730 MT/yr)

Phase Interference Parameter () Maximum Fluid

Pressure (MPa)
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 500 m from well

35

0.1 4 30
1 =25

0.2 [
- 20

O
w
| | | |

15

O
AN
| | ) |

10

Residual CO, Saturation (Sq;)

0.5 E
g/ VirginiaTech

frvant the Fulura

14



CO, & Pressure Distribution

Discrete wetting front when
k., drops sharply

Discrete pressure front
when k, drops sharply
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Core-Flood Experiments

Stanford

Precourt Institute

for Energy

Methodological development is complete &
experiments are now able to be performed reliably

v Fracture apertures under
changing stress

v Permeability
v Relative permeability
v" Fracture saturation

v' Capillary pressure
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Core-Flood Experiments

Core-Flood Visualization Facility
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Core-Flood Experiments

Influence of geomechanical reactions on transport properties

Basalt tuff is used as an end-member to understand reactivity of the glass fraction
of basalt and its influence on transport properties

3-D Image of Basaltic Tuff Porosity
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Core-Flood Experiments

Basalt tuff is highly reactive

Exposure to carbonated brines quickly reduces permeability and porosity
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Accomplishments to Date

Build database of CRBG properties

— In situ stress data from Hanford

— Saturated and unsaturated hydraulic properties from literature
— Mechanical properties for intact rock mass

Geomechanical analysis for Slack Canyon #2 Flow Top
— Borehole breakdown pressure (P,)

— Mohr failure envelope for intact rock mass

Investigate k.., parameter space with numerical simulations
— Evaluate simulated P;against failure criteria

Core-flood experiments to assess reactivity

— Experimental procedures are complete

— Initial experiments show basaltic tuff is highly reactive
» Rapid change in porosity & permeability
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Synergy Opportunities

— Coupled thermal-hydro-mechanical modeling
— Lab-scale to field-scale
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Summary

Key Findings

Pressure accumulation is
sensitive to relative permeability,
even at low injection rate.

— Kk, strongly influences maximum
pressure build-up

Far-field failure is unlikely for
simulation scenarios tested here.

Basaltic tuff is highly reactive.
— Rapid drop in porosity & permeability

& VirginiaTech
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Future Plans

Field work scheduled for Fall
2015 to obtain LIDAR scans of
CRBG fracture networks.

Reservoir characterization and
stochastic simulation for Monte
Carlo modeling.

Thin sections for petrographic
analysis.

Capillary pressure
measurements

Stress-dependent permeability
experiments
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Appendix

— These slides will not be discussed during the
presentation, but are mandatory
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Organization Chart

Principal Investigator Co-Principal Investigator
Dr. Ryan M. Pollyea Dr. Sally M. Benson
Virginia Tech Stanford
Graduate Graduate Graduate Postdoc
Assistant Assistant Assistant 4% Time
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Gantt Chart

Baseline Schedule and Timeline

2014-2015 2016 2017
ONDJFMAMJ JASONDJFMAMJ JASOND JFMAMJ JASOND

Aug 1, 2015: Project transfer to Virginia Tech
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are underway.
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