RISK MANAGEMENT AND MONITORING STRATEGY OFFSHORE

Peterhead CCS Project
August 2015

Dr Owain Tucker
Global Deployment Lead CCS
The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2014 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, August 18, 2015. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330
1.0
PETERHEAD CCS PROJECT OVERVIEW
PROPOSED PETERHEAD PROJECT AT A GLANCE

- **World First** – the first full-scale CCS project on a gas-fired power station
- **Status** – proposal currently in Front End Engineering Design phase, seeking regulatory approvals and Government funding for capital and operating expenses
- **Where** – capture at Peterhead Power Station; storage in depleted Goldeneye gas reservoir (100 KM offshore)
- **Impact** – 10 to 15 million tonnes of CO₂ captured over a 10 to 15-year period (90% CO₂ capture from one turbine)
- **Technology** – post-combustion capture using amines
Peterhead Power Station
Operating since 1982

Goldeneye Platform
568 BScf gas produced

Project Technical Line-Up

GAS TURBINE
Flue gas

ABSORBER TOWER
CO₂-rich amine

REGENERATION TOWER

CO₂

COMPRESSION AND DEHYDRATION
2.0 OFFSHORE RISK MANAGEMENT & MONITORING
Ensure Conformance to indicate long-term effectiveness of CO₂ storage
- demonstrating actual storage performance is consistent with expectations about injectivity, capacity and CO₂ behavior inside the storage complex

Ensure Containment to demonstrate the safety of CO₂ storage
- detect significant irregularities, migration and leakage of CO₂
- detect significant adverse effects to environment and human health

Verify Safeguards
- Verifying the expected effectiveness of existing safeguards created by site selection, site characterization and engineering designs
- Creating additional safeguards using monitoring systems to provide early warning to trigger timely corrective measures
MONITORING AND CORRECTIVE MEASURES FORM PART OF THE BARRIER SYSTEM

1. Sub-surface release of CO2
2. Lateral migration
3. CO2 release at seabed
4. Abandoned wells
5. Sub-surface release of CO2
6. CO2 release at seabed
7. Injection wells

Acidic fluids, Faults, fractures & features, Stress of injection, Diffusion, Abandoned wells, Injection wells

Release outside complex (subsurface) - well-related threats

CO2 released from complex

AW-01 Flow up abandoned exploration and appraisal (E&A) wellbores to near surface

B-PP Four of the wells in Goldeneye field are in contact with Captain reservoir and have good plug(s) across the primary seal. Fifth well is on the border and does not see Captain. It too has plug(s) across the primary seal.

B-ASPI Additional shallower plugs (well-specific)

Koster
Engineered
Drilling Reports
Dynamic Modelling Report

B-SH Sub-hydrostatic until re-pressurised by aquifer.

Tucker
Natural
Pressure Data (Downhole Gauges)

B-BS Squeezing shuttle can reduce annul and pack off casing

B-BS Baseline survey (check seabed around area of wells, and potentially seismic surveying) to confirm no indication of leakage. Intervene if necessary.

Susanto/Dean
Detect

B-MF Monitoring for CO2 plumes (e.g. microseismic, 4D seismic or fall off testing) and intervention (if tests showed positive signal)

Susanto/Dean
Detect

MMV

Flow could occur even when sub hydrostatic if there is a small gas leak at the top of an abandoned well bore and a large gas leak at the bottom.

B-MI Monitoring and intervention.

Susanto/Dean
Correct

Well-related release mechanisms

Geological/geomechanical release mechanisms

CO2 release at platform

Susanto/Dean
Detect

MMV

Flow up abandoned exploration and appraisal (E&A) wellbores to near surface

B-PP Four of the wells in Goldeneye field are in contact with Captain reservoir and have good plug(s) across the primary seal. Fifth well is on the border and does not see Captain. It too has plug(s) across the primary seal.

B-ASPI Additional shallower plugs (well-specific)

Koster
Engineered
Drilling Reports
Dynamic Modelling Report

B-SH Sub-hydrostatic until re-pressurised by aquifer.

Tucker
Natural
Pressure Data (Downhole Gauges)

B-BS Squeezing shuttle can reduce annul and pack off casing

B-BS Baseline survey (check seabed around area of wells, and potentially seismic surveying) to confirm no indication of leakage. Intervene if necessary.

Susanto/Dean
Detect

B-MF Monitoring for CO2 plumes (e.g. microseismic, 4D seismic or fall off testing) and intervention (if tests showed positive signal)

Susanto/Dean
Detect

MMV

Flow could occur even when sub hydrostatic if there is a small gas leak at the top of an abandoned well bore and a large gas leak at the bottom.

B-MI Monitoring and intervention.

Susanto/Dean
Correct

Well-related release mechanisms

Geological/geomechanical release mechanisms

CO2 release at platform

Susanto/Dean
Detect

MMV
Not all threat branches have the same impact on receptors

- Well related pathways have the ability to rapidly bring CO$_2$ to the surface or near surface
- All other paths involve significant buffering/delaying steps
PRESSURE IS REDUCED BECAUSE OF PRODUCTION, CO2 IS LOCALISED IN THE HYDROCARBON FIELD LOCATION

Different aquifer scenarios

CO2 is shown in red, hydrocarbon (gas and condensate) in green and water in blue. Original OWC and GOC are pink lines.
- Test each potential technology against valid migration scenarios for each phase of the project.
- Select a set based on tiered monitoring strategy: detect, define, delineate
FIT FOR PURPOSE MONITORING PLAN

- Established a set of monitoring technologies that
 - satisfy the conformance requirement
 - add extra barriers or controls to the existing barriers to reduce the risk of a significant irregularity even further