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Summary of Our Preliminary and 

Year 1 Research  

Results and Technical Approaches 

Identifying a series of nickelates with an active performance 

(+) High D and k in a wide temp region (+) Cr resistance; (-) Phase decomposition 

Identifying a series of nickelates with a stable and active performance 

(LGFCS proprietary work) 

Thermal Stable Compounds:  

Doped PNNO5050, PNNO2575, and doped PNNO2575 

Electrochemically Stable Compounds:  

To be reported 

Testing methodology 

Reproducibility and reliability 

Multiple cells; statistic distribution of data 

Quantification of Phase Evolution in a Single Cell 

Standard and Au grid electrode 

Accelerated Testing Protocols 

Theoretical analysis and methods 
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1. Superior D and k  

600oC: D = 210-8 cm2/s; k = 4.210-7 cm/s 

800oC: D = 1.110-7 cm2/s; k = 310-6 cm/s 

2. Active over wide range of temperatures 

3. Thermal expansion matching with  

     electrolytes 

4. Absence of Sr and kinetic demixing 
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 Phase transition in  

An-1A2
’BnO3n+1, from n=1  

to n>1.  
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 1. Extensive research has been carried out 

2. Active electrode 

600oC: D = 410-10 cm2/s; k = 510-8 cm/s 

800oC: D = 510-8 cm2/s; k = 310-7 cm/s 

3. Long-term operation has been 

demonstrated at multiple institutions. 
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1. Sr segregation 

2. Volatile Co densification 

3. Demixing 
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(Boehm et al., SSI, 176, 2005) 

Comparison between Nickelates 

and Perovskite Cathodes 
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Developing Cathode Materials with 

Low Polarization Resistance 

Rationales 

1. Rapid surface exchange and oxygen ion diffusion in Pr2NiO4 – based oxides 

2. Activity of nickelates over a wide temperature region (550 – 900oC) 

3. CTE Compatibility between nickelates and electrolytes (doped ceria or zirconia) 
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Approaches 
1. Compositions:  

• (Pr0.50Nd0.50)2NiO4 – PNNO5050  

• (Pr0.25Nd0.75)2NiO4 – PNNO2575 

• Substituted PNNO (LGFCS proprietary work) 

 

2. Measurements 

• Half-cell measurements: ScSZ as the electrolyte measured at 750, 790, 830, and 870oC 

• Full-cell measurements: ScSZ electrolyte-supported and anode-supported cells 

•   Durability (250 – 4000 hours) and reproducibility (3-5 cells per condition) 

•   Current-potential sweep, impedance/differential relaxation time analysis, pO2  

Current Status 
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LGFCS, SECA workshop 2013 
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Results and Technical Approaches 

Identifying a series of nickelates with an active performance 

(+) High D and k in a wide temp region (+) Cr resistance; (-) Phase decomposition 

Identifying a series of nickelates with a stable and active performance 

(LGFCS proprietary work) 

Thermally Stable Compounds:  

Doped PNNO5050, PNNO2575, and doped PNNO2575 

Electrochemically Stable Compounds:  

To be reported 

Testing methodology 

Reproducibility and reliability 

Multiple cells; statistic distribution of data 

Quantification of Phase Evolution in a Single Cell 

Standard and Au grid electrode 

Accelerated Testing Protocols 

Theoretical analysis and methods 

Summary of the Preliminary and 

Year 1 Research  
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Stabilize the Structure 

What are the roles of substituting elements?  
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Current Status 

Rationale 
1. It is unknown why the performance of Pr2NiO4 is stable, but the phase transition from Pr2NiO4 to Pr6O11 

and higher ordered phases (e.g. Pr3Ni2O7 and Pr4Ni3O10) was observed.    

2. Why are some compositions more stable than the others? 

3. Charge/valance ratio and strain effects on the structural stability at A-site are contributing factors. 

Approaches 
1.  Electrochemical measurements of doped PNNO5050 and PNNO2575 

2. Phase stability in doped (Pr0.25Nd0.75)2NiO4 – PNNO2575 calcined at various 

temperatures and measured at 790 and 870oC for a long duration. 

3.   A-site deficient compounds has shown improved activity, but its durability is 

unknown. The chemical potential of A-site element will influence the formation 

of Pr6O11 or Nd2O3, thus controlling the phase stability.  

Ionic Radii (3+ and CO#: 8) 
 

  La: 1.16 Å; Nd: 1.11 Å 

  Pr: 1.13 Å; Pr (4+): 0.96 Å 

  Sm: 1.08 Å; Sm (2+): 1.27 Å 

Migration of oxygen ion to interstitial site creates 

vacancy available for adsorption of oxygen 

(Boehm et al., SSI, 176, 2005) 
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Results and Technical Approaches 

Identifying a series of nickelates with an active performance 

(+) High D and k in a wide temp region (+) Cr resistance; (-) Phase decomposition 

Identifying a series of nickelates with a stable and active performance 

(LGFCS proprietary work) 

Thermally Stable Compounds:  

Doped PNNO5050, PNNO2575, and doped PNNO2575 

Electrochemically Stable Compounds:  

To be reported 

Testing methodology 

Reproducibility and reliability 

Multiple cells; statistic distribution of data 

Quantification of Phase Evolution in a Single Cell 

Standard vs. Au grid electrode 

Accelerated Testing Protocols 

Theoretical analysis and methods 

Summary of the Preliminary and 

Year 1 Research  
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Phase Purity and 

Stability of PNNO 
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Preliminary work under LGFCS Phase II subcontract 
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Preliminary work under LGFCS Phase II subcontract 
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Preliminary work under LGFCS Phase II subcontract 
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50% Nd-substitution does not stabilize R-P Structure 
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Preliminary work under LGFCS Phase II subcontract 
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LGFCS proprietary work 
Preliminary work under LGFCS Phase II subcontract 
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LGFCS proprietary work 
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Fully Stabilizing the R-P Structure via A-site Doping 
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PNNO2575 



20 25 30 35 40 45 50 55 60

(220)
(020)

(200)

(113) 

(004) 

(111)

Pr
2
NiO

4
, Orthorhombic, PDF #97-008-1577

2degree)

In
te

n
s

it
y

 (
a

.u
.)

(-137) (135) (-331)

(-133)

(131) Pr
12

O
22

, Monoclinic, PDF#97-008-2107

NiO PDF#97-004-3740

Composition C at 1150 C 2h 

Composition C at 1150 C 2h 

annealed at 790 C for 150h in air

20 

Fully Stabilizing the R-P Structure via A-site Doping 

PNNO2575 
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Quantification of 

Cathode Durability 
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Quantification of Phase Evolution 

during Operation (Nickelates and LSCF)  

Quantification of phase evolution is necessary  
1. to investigate the kinetics for phase decomposition (in LSCF) 

and phase transition (in nickelates). 

2. to predict the durability of the cathodes. 
 

Quantification is very challenging because of 
1. the overlapping of XRD reflections and possible interactions 

between the cathode and its current collector (e.g. LSC, LNF). 

2. the cathode thickness (30 m), which might be too much for 
XRD analysis to study the cathode evolution occurring at the 
cathode/electrolyte interfaces. 

3. the slow kinetics of phase evolution (could take 1000s-hours), 
which necessitate the development of accelerated test 
protocols.  
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Requirements and Cell Designs for 

Quantifications 

Requirements for Current Collector 

1. Chemically and mechanically 

compatible with the cathode 

2. Chemically stable during operation 

3. Electrically conducting 

4. Its XRD reflections don’t overlap with 

major cathodes 

5. Don’t interfere (deteriorate or 

enhance) cathode performance 

6. Stable and reproducible XRD 

reflections before and after 

measurements to provide a baseline. 

From oxide current collector 

to gold collector 

Cell Designs by using Au 

Current Collector 

1. Design a series of Au grids with 

various open areas and grid width, 

which are used as current collector 

and baseline reference 

2. Questions to be addressed: (1) 

which is the optimized thickness of Au 

grid (2) Au intensity and peak area vs. 

operation conditions.  
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Validation of Stable and 

Reproducible Au Intensity 
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 Correct XRD height
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         than the correct XRD height
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Au/LSCF/GDC/YSZ 
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same grid, so Au covered all LSCF) 

Gold 

LSCF 
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Validation of Stable and 

Reproducible Au Intensity 

YSZ/GDC/LSCF/Au (LSCF and Au 

were printed with the same grid, so Au 

covered all LSCF) 
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2 (degree)

GDC20

YSZ

Au PDF#: 

00-001-1172

Pt PDF#: 

00-001-1190

Pt grid- LSCF-I 

initial

LSCF PDF#:

00-048-0124
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Validation of Stable and 

Reproducible Au Intensity 

YSZ/GDC/LSCF/Au (LSCF and Au 

were printed with the same grid, so Au 

covered all LSCF) 

20 25 30 35 40 45 50 55 60

GDC20

YSZ

Au PDF#: 

00-001-1172

Pt PDF#: 

00-001-1190

2 (degree)

Au grid on  

LSCF grid (cell 1)

Pt grid- LSCF-I 

initial

LSCF PDF#:

00-048-0124
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Validation of Stable and 

Reproducible Au Intensity 

YSZ/GDC/LSCF/Au (LSCF and Au 

were printed with the same grid, so Au 

covered all LSCF) 

20 25 30 35 40 45 50 55 60

GDC20

YSZ

Au PDF#: 

00-001-1172

Pt PDF#: 

00-001-1190

2 (degree)

Au grid on  

LSCF grid (cell 1)

Pt grid- LSCF-I 

initial

Au grid covers 

the whole LSCF 

grid (cell 2)

LSCF PDF#:

00-048-0124
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Electrochemical 

Measurements 

(Accelerated Test) 
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LSCF-I LSCF-III 

Accelerated Test: LSCF 
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Performance of PNNO5050 and 

Substituted PNNO5050 
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 Cell performances are reproducible. Au was used 
as the current collector to quantify the kinetics of 
phase evolution.   

 The ohmic loss is small at all temperatures even 
though the electrolyte is ~ 20 m. The cathodic 
resistance for gas diffusion seems large, which can 
be reduced by using LSC or LNF. But the reason 
why it was not observed in LSCF is unknown.  

  Rohm is 0.12  Ω cm2  at 750 °C decreasing to 0.06 Ω  
cm2 at 850 °C. 
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1. Is Au peak area consistent among the cells? 

2. Does Au peak area change after accelerated 
test, if so  by how much and why? 

3. Can the crystal phase changes in the         
cathode be quantified in a reliable way?  

 

 Cathode phase evolution can be calculated 
with respect to Au reference peak 

 Average Au peak area before and after the 

        measurements can be used directly to  

        calculate the percentage of cathode phases. 

               

  

         

         

Full cells with Au grid after the measurements. 

Accelerated Test Protocols 

Nickelates 
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Results and Technical Approaches 

Identifying a series of nickelates with an active performance 

(+) High D and k in a wide temp region (+) Cr resistance; (-) Phase decomposition 

Identifying a series of nickelates with a stable and active performance 

(LGFCS proprietary work) 

Thermally Stable Compounds:  

Doped PNNO5050, PNNO2575, and doped PNNO2575 

Electrochemically Stable Compounds:  

To be reported 

Testing methodology 

Reproducibility and reliability 

Multiple cells; statistic distribution of data 

Quantification of Phase Evolution in a Single Cell 

Standard and Au grid electrode 

Accelerated Testing Protocols 

Theoretical analysis and methods 

Summary and Conclusionss 


