Novel Compact Ceramic Heat Exchanger For Solid Oxide Fuel Cell Cathode Air Preheater Application

J. L. Córdova, Ph.D.

J. F. Walton II

H. Heshmat, Ph.D. (PI)

DOE Program Manager: Sydni Credle, Ph.D. Crosscutting Research Division National Energy Technology Laboratory (NETL)

MiTi: What We Do

Hydrogen Pipeline Compressor

Flywheel Electromechanical Battery

Micro Machining

By Use of Ultra High Speed, We Deliver Compact,

Power-Dense Engines!

At the Core: MiTi's Advanced Foil Bearings

- Oil-Free

 Maintenance/Contamination Free
- Ultra High Speed: Proven to 1,000,000 rpm
- With Korolon[®] 1350/2250 ⇔ High Temperature Operation ⇔ Turbine Exhaust Conditions, up to 810°C (1500°F)

Background

MiTi[®] 8 kW Turboalternator

- 1.6 kW/kg (1 hp/lbm)
- Oil-free foil bearings/Process-air lubricated
- Design speed: 184,000 rpm
- 12% Thermal Efficiency (Unrecuperated)

References:

- Heshmat, H., Walton, J. F., and Hunsberger, A., "Oil-Free 8 kW High-Speed and High Specific Power Turbogenerator," Proceedings of ASME Turbo Expo 2014, GT2014-27306
- Córdova, J. L., Walton, J. F., and Heshmat, H., "High Effectiveness, Low Pressure Drop Recuperator for High Speed and Power Oil-Free Turbogenerator", Proceedings of ASME Turbo Expo 2015, GT2015-43718

Recuperator

- Low pressure drop: < 3 psi
- High Effectiveness: $\varepsilon \square 0.9$
- Radial geometry fits around combustor
- Increase in Thermal Efficiency to 33%

Project Team

MiTi

- Hooshang Heshmat, Ph.D.
 - Principal Investigator
 - Technical Director
- James F. Walton
 - Sr. Program Manager
- Jose L. Cordova, Ph.D.
 - Program Manager
 - Project Engineer

FuelCell Energy, Inc.

- Hossein Ghezel-Ayagh, Ph.D.
 FCE Lead
- Robert Sanderson, P.E.
 - Systems Engineer
- Stephen Jolly
 - Systems Design Engineer

Objective

- Develop a High Heat Transfer Effectiveness, Low Pressure Drop *Ceramic* Heat Exchanger for Application as Solid Oxide Fuel Cell Cathode (SOFC) Air Preheater.
 - Possible Materials: Ceramics, Cermet, Hybrid
 Ceramics, Elastic Ceramics

Purpose of Heat Exchanger

- SOFC cathode requires a fresh air supply at 700°C for operation.
- Anode exhaust contains CO and H₂.
 - These are post-combusted in a catalytic oxidizer, yielding high temperature heat.
 - Heat is recovered in *heat exchanger* and used to preheat supplied air.

(Continued)

Motivation for Use of Ceramics

- Humidity in air supply causes <u>metal alloys</u> (e.g.: steels, nickel-based and other super-alloys) used in typical heat exchangers to release volatilized chromium.
 - Chromium reacts with cathode materials to degrade cell voltage and ultimately poison cathode elements.
- Alternate materials (i.e., ceramics, cermets, hybrid ceramics, elastic ceramics) may offer best choice for SOFCs.

Overview of Approach

- <u>Leverage</u> MiTi's Novel Gas Turbine Recuperator
 - Original application: 8 kW gas turbine-based turboalternator
 - Turbine engine specifications required low pressure drop (3 to 5 psi)

- Attained around 90% heat transfer effectiveness at engine operating conditions.
- <u>Extend</u> Technology To SOFC
 - Ceramic Materials
 - Reduce pressure drop

Major Program Elements

- 1. Solid Oxide Fuel Cell Definition of Requirements
- 2. Heat Transfer Analysis and Heat Exchanger Sizing
- 3. Ceramic Materials Review and Selection
- 4. Fabrication/Test of Subscale Heat Exchanger Elements
- 5. Fabrication/Test of Heat Exchanger Prototype

Target Application: Solid Oxide Fuel Cell Operating Conditions

IDENTIFICATION OF SOFC REQUIREMENTS

Target Application

- FuelCell Energy Inc.
 - Proof Of Concept 50 kW_e
 SOFC

SOFC System Schematic

Cathode Air Preheater Requirements

Preheater Operating Conditions:

• Required Preheater Heat Transfer:

 $Q = \dot{m} c_p (Tair_{out} - Tair_{in}) \square 41 \text{ kW}$

• Total Allowable Pressure Drop: $\Box_{tot} = 0.5 \text{ psi}$

Heat Transfer Analysis and Heat Exchanger Sizing

MITI'S RECUPERATOR EXPERIENCE

MiTi's Recuperator Experience

- Overlapping quasi-helical flow paths
 - Patent Pending: U.S. Provisional
 Patent Application US62/040,559

Patent Pending Design

- Passages formed by stack of trays with wedge-shaped passage segments
 - Two types of trays: alternating openings at inner/outer radius
 - Openings turn the flow to diagonally adjacent wedge pattern

CNC-Machined Heat Transfer Elements

Recuperator Testing

Experimental Pvs. m Performance

- Pressure drop designed to satisfy engine constraints.
 - Turbine design pressure drop too high for fuel cell
- SOFC imposes no weight or size limit constraint Pressure drop can be designed to be significantly lower.

Experimental Effectiveness Performance

- Measured effectiveness is uniformly high over range of operating flows.
- Theoretical model fully validated High confidence in tool for sizing of SOFC heater

Heat Transfer Analysis and Heat Exchanger Sizing

HEAT EXCHANGER DESIGN

Preliminary Heat Exchanger Design

- MiTi's Modeling Tool
 - Written in Mathematica
 - Solves fundamental heat transfer governing equations
- First Iteration Sizing Results:
 - Preheated air temperature Tair_{out} = 1200°F
 - − Pressure drop □P = 0.33 psi
 - Effectiveness = 85%

Cool stream ((in lbm/min) Cool stream i {300 K to 800	inlet temp	8 30	$ \begin{split} \dot{m} &= 60.5 \times 10^{-3} \text{ kg/s} \\ \rho &= 1.18 \text{ kg/m}^3 \\ \mu &= 18.5 \times 10^{-6} \text{ s Pa} \\ k &= 26.4 \times 10^{-2} \text{ W/(m K)} \\ \text{Cp} &= 1.007 \times 10^3 \text{ J/(kg K)} \\ \\ \dot{m} &= 60.5 \times 10^{-3} \text{ kg/s} \\ \rho &= 341 \times 10^{-2} \text{ kg/m}^3 \\ \mu &= 44.28 \times 10^{-6} \text{ s Pa} \\ k &= 69.45 \times 10^{-3} \text{ W/(m K)} \\ \text{Cp} &= 1.1473 \times 10^3 \text{ J/(kg K)} \\ \end{split} $			
Hot stream flo (in lbm/min) Hot stream inl {700 K to 1200	et temp] 103				
Metal condu (in W/(m K))	ctivity 2		hello			
		Trigger calculati	ion → cli	l Ck		
	Reynolds No.	Pressure drop	Nusselt No.	Heat Trans. Coeff.		
Cool stream	15030.9	445.689 Pa	43.9292	50.2551 W/(m ² K)		
Hot stream	6279.83	1940.99 Pa	22.8742	68.8445 W/(m ² K)		
	Ove	rall U 27.4544 V	W/(m ² K) 22.314 K)		

Preliminary Heat Exchanger Design

- Subdivide hot and cold flow into 12 Passages Each (Total of 24 Passages Wide),
- Make Stack of 12 Layers Deep
- Geometry of heat exchange elements:
 - Total length single flow path: 6.0 m
 - Wall thickness: 0.004 m
 - Passage width: 0.05 m
 - Passage height: 0.015 m

Parametric Study For Design Optimization

Basic Heat Transfer Element

Heat transfer between flows:

$$q = U A \Delta T = \frac{A (T_h - T_c)}{\frac{1}{h_h} + \frac{L}{k} + \frac{1}{h_c}}$$

Overall Heat Transfer Coeff.:

$$\Longrightarrow U = \frac{1}{\frac{1}{h_h} + \frac{L}{k} + \frac{1}{h_c}}$$

Effect of Wall Thermal Conductivity

At SOFC operating conditions and practical wall thickness (L < 0.005 m), the walls are thermally thin, and the overall heat transfer coefficient is nearly *independent of wall conductivity*, therefore, the choice of material is irrelevant.

Heat Exchanger Preliminary Layout

- Modular segments form overlapping quasi-helical flow paths.
- Design allows to add or remove segments according to flow, pressure drop, or heat exchange rate requirements.
- Patent Pending: U.S. Provisional Patent Application US62/040,559

Material and Fabrication Considerations

FABRICATION TRIALS

Component Fabrication Testing

- Material Selected: Alumina-Silicate Machinable Ceramic
 - Machined in Green State
 - Partially Fired to 1600°F
- Geometric Tolerance 1%

Seal Pressure/Leak Tests

- Successfully Held 0.5 psi
- Total Allowable Drop over Device: 0.33 psi, or less than 0.03 psi per Passage Segment (Assuming each Passage is Made from 10 Segments) ⇔ Huge Pressure Margin

Closing Remarks

- Status: Program Well Underway
 - Identified SOFC
 Preheater Requirements
 - Preliminary Preheater
 Design Established
 - Materials Selection Done
 - Prototype Fabrication
 Trials Underway

- Next Steps
 - Define/Design Interface to SOFC
 - Performance Tests on Subscale Device
 - Integrate Prototype
 - Long Duration Testing
 1000 Hours on SOFC
 - Post-Test Inspection

Program Schedule

Year Quarter	Project Timeline									
	2014	2015				2016				
	1	2	3	4	5	6	7	8		
Task 1 Project Management and Planning		Tod	av							
Task 2 Materials Review and Selection	=		ay							
Task 3 Preliminary SOFC Heat Exchanger Sizing										
Task 4 Preliminary Design Review		î	-					2 		
Task 5 Fabricate Subscale Heat Exchanger										
Task 6 Detailed Design										
Task 7 Detailed Design Review (DDR)								-		
Task 8 Fabricate Heat Exchanger		⇒ Pla	nned							
Task 9 Preliminary Heat Exchanger Test	1	Do	ne							
Task 10 Integrated Heat Exchanger Test		📥 Un	derway	/			1			

Acknowledgement

The authors gratefully acknowledge the support and interest of DOE and particularly of Dr. Sydni Credle, at the Crosscutting Research Division, NETL.

Questions and Discussion

www.miti.cc

www.korolon.com

