Introduction

- Simultaneous calibration of polarization curves and impedance behavior is necessary for SOFCs model developments, but was largely neglected in the literature.
- Tens of parameters are nonlinearly coupled in the multi-physics model of SOFCs, so that large number of datasets are needed for model calibration.
- The accurate prediction of cell performance at different air/fuel utilization conditions, as well as different working loads, should also be considered for model developments.
- The present study aims to find the way of determining the essential properties of fuel cells via efficient combination of experiments and numerical simulations.

Model Description

- Physics-based SOFC Analysis Procedure
 - Governing Equations
 - Charge conservation
 - Electrode phase
 - Electrolyte phase
 - Dense electrolyte
 - Species transportation
 - Butler-Volmer type equations
 - Diffusion coefficients
 - Effective conductivity
 - Microstructure Properties
 - Length of triple phase boundary
 - Interface area between ion-conducting and electron-conducting phase
 - Tortuosity

Results

- Calibration Procedures for Button Cell
 - Simultaneous calibration of polarization curves and impedance behavior

- Detailed Analysis of Processes Inside Electrodes
 - Air/fuel fraction distribution within electrode
 - Performances with different working loads and impedance of electrodes

Acknowledgements

- As part of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000.2.621.248.001.
- The authors also wish to explicitly thank the group of Dr. Shiwoo Lee of NETL for providing the datasets of several baseline and Co-infiltrated cells.
- Experimental datasets are analyzed in conjunction with empirical polarization analysis to extract essential information of the fuel cell, and finally refined by multi-physics numerical simulations.
- This procedure can also predict the SOFC performances for different utilization cases and working loads, as well as cell performance due to microstructural changes, such as infiltration and degradation.