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Introduction Choice of Shell Material Sintering Behavior

Improvements are needed to mitigate effect of cathode degradation on long-term

SOFC performance

« Srmigration to surface of perovskite cathode materials appears to be linked
to cell per at elevated

« Post-sintering infill approaches have shown promise for improved short and
long-term performance

« Surface modified powder is an alternate, potentially cost-effective route to
improved long-term performance

Desired attributes of shell material:

Conductive

Strong blocking potential for Sr migration to surface
Non-interfering with sintering

Non-reactive with cathode

Long term stability

Sr migration Infilled cathode
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