Scalable and Cost Effective Barrier Layer Coating to Improve Stability and Performance of SOFC Cathode

> Xingbo Liu West Virginia University

> Scott Barnett Northwestern University

> > July 16, 2015

Oxygen Reduction Reaction on SOFC Cathode

- Important Factors: K, D, δe , etc.
- Un-settled Issues: ORR Details
- Implications to Industrial Applications

H. Zhang, K. Gerdes, <u>X. Liu*:</u> Journal of Electrochemical Society 161 (2014) F983-990
M. Gong, R. Gemmen, D. Mebane, K. Gerdes, <u>X. Liu</u>*, Journal of Electrochemical Society, 162 (2014) F344-F353
M. Gong, R. Gemmen, X. Liu*, Journal of Power Sources 201 (2012) 204-218

Realistic Composite Cathodes, Effects of Morphology

- Porosity
- Surface area
- Grain size
- Grain boundary
- MIEC/IC ratio

C/Air interface

lonic current = 0, Electronic potential prescribed, Oxygen concentration prescribed, and flux of all Other species (coverages and vacancies) is zero

Electronic current = 0, lonic potential prescribed, YSZ oxygen vacancy is prescribed, All other fluxes are zero

S. Pakalapati*, K. Gerdes, H. Finklea, M. Gong, X. Liu, I. Celik, Solid State Ionics 258 (2014) 45–60

Performance and Durability Implications

- Microstructural changes (loss effective TPB area)
 - Grain growth
 - 。 Coarsening of the particles
 - Surface re-construction
- Chemical reaction with YSZ electrolyte.

 $La_2O_3(s) + 2ZrO_2(s) \rightarrow La_2Zr_7O_3(s)$ $SrO(s) + ZrO_2(s) \rightarrow SrZrO_3(s)$

- Strontium segregation related issues $2Sr_{La}^{'} + V_{O,LSCF}^{\bullet \bullet} + 2O_{O}^{x} \leftrightarrow 2SrO(s)$
- Poisoning of the cathode (e.g. by chromium species etc.) $SrO(s) + H_2O(g) \rightarrow Sr(OH)_2(s)$ $SrO(s) + CO_2(g) \rightarrow SrCO_3(s)$
- Etc.

Approaches for Degradation Mitigation

- Microstructural changes (loss effective TPB area)
 - Grain growth
 - Coarsening of the particles
 - Surface re-construction
- No easy solutions
- Chemical reaction with YSZ electrolyte.
- Barrier Layers
- Strontium segregation related issues
- Coating, Infiltration, Sr-free cathodes (maybe)
- Poisoning of the cathode (e.g. by chromium species etc.)
- Interconnect coatings, impurity tolerant cathodes etc.

<u>Operation</u> <u>Parameters</u> Temperature, Overpotential, Environments, etc.

SOFC Cathode Barrier Layers

- Chemical Compositions (GDC, SDC, etc.)
- Coating Methods (Screen Printing + Sintering)
- Functions
 - Avoid Zirconate Formation
 - Improve ORR
- Current Issues
 - Porosity
 - Thickness

Project Objectives

- Aim 1: To develop a scalable and cost-effective electrophoretic deposition (EPD) coating process to achieve a dense barrier layer between an YSZ electrolyte and the cathode in a solid oxide fuel cell (SOFC) to significantly improve both stability and performance of SOFC cathodes
- Aim 2: To systematically investigate the interaction between doped ceria barrier layers and (La,Sr)(Co,Fe)O₃ (LSCF) cathode and the effects on oxygen reduction reaction (ORR) kinetics, electrochemical performance, and long-term stability of cathodes
- Aim 3: To achieve optimal barrier layer thickness.

Aim 1: Electrophoretic Deposition (EPD)

Aim 1: EPD vs. Other Possible Coating Methods

Method	Screen	Dip	Spin Coating	Electroplating	Thermal
	Printing	Coating			Spray
Green-body	High	High	High	Low	Medium
Porosity	-	_			
Coating time	Seconds/	Seconds/	Seconds/	Minutes/hours	Seconds
(~5µm)	minutes	minutes	minutes		
Cost	Low	Low	Low	Low	Medium
Scalable	Yes	Yes	Difficult	Yes	Yes
Composition	Easy	Easy	Easy	Moderate	Easy
Control					
Thickness	Easy	Easy/	Easy/ moderate	Moderate	Difficult
Control (~5µm)		moderate			
Coat on non-flat	Difficult	Easy	Moderate	Easy/moderate	Easy
surface					
Sintering	Required	Required	Required	Usually not	Usually not
Method	Tape Casting	PLD	RF Sputtering ¹	CVD/ALD	EPD ²
Green-body	High	Low	Low	Low	Low
Porosity					
Coating time	Seconds/	Hours	Hours	Hours	Several
(~5µm)	minutes				minutes
Cost	Low	High	High	High	Low
Scalable	Yes	No	Yes	Yes	Yes
Composition	Easy	Moderate	Moderate	Moderate	Easy
Control	-				
Thickness	Easy	Moderate	Moderate	Easy/ moderate	Easy
Control (~5µm)					
Coat on non-flat	Easy	Easy/	Easy/ moderate	Easy/ moderate	Easy
surface		moderate	-		/moderate
Sintering	Required	Usually not	Usually not	Usually not	Required ³

Aim 1: Major Technical Challenges for EPD

- Suspension Issues
 - Conductivity
 - Compatibility with particles & Substrates
 - Stability
- Non-Conductive Substrates
- Sintering Optimization
 - Sintering Temperature & Atmospheres
 - Sintering Aids

Aim 1: Preliminary Results - Suspension

Substrates: Stainless Steel, Graphite

Results: Dense GDC layer formed on cathodic substrate; GDC particles in ethanol are positively charged

Aim 1: Preliminary Results – Non-Conductive Substrates

Possible Solutions: Carbon Coating vs. Porous Substrates

Preliminary Results: We coated a layer of carbon/graphite on YSZ pellet by spin coating, tap casting, spray, sputtering, but the preliminary results showed the cohesiveness of carbon/ graphite layer is very poor and the conductivity is low.

12

Aim 1: Preliminary Results – Non-Conductive Substrates

Possible Solutions: In-situ forming a conducting Polymer Layer

Dabasish. Das, Rajenda N. Basu. J.Am.Ceram.Soc.97[11] 3452-3457(2014).

Aim 1: Preliminary Results – Non-Conductive Substrates

Possible Solutions: In-situ forming a conducting Polymer Layer

Aim 1: Preliminary Results – Reducing Sintering Temperature

Fracture cross sectional SEM images taken after testing of cells with 1 mol% Fe2O3 in the YSZ layers and GDC layers with 1 (a), 2 (b), or 3 (c) mol% Fe2O3.

Voltage and power density versus current density, measured at different temperatures in air and humidified hydrogen.

Z. Gao, V. Zenou, D. Kennouche, L. Marks, S. Barnett, J. Mat. Chem. A (2015)

Aim 2: Electrolyte/Barrier Layer Effect on ORR Kinetics

Combination of high electronic conductivity and activity from B site elements.

 $0.5 \ \Omega \text{cm}^2$ for YCCC on SSZ at 850°C

Two-arc profiles for all electrodes

Two electrolytes used: YSZ, SSZ \rightarrow Better performance from SSZ/GDC?

16

Aim 2: Electrolyte/Barrier Layer Effect on ORR Kinetics

Table I. *R*, *C* and f_0 for HF and LF arcs of four electrodes after fitting at 850 °C, and the

In wet H ₂ at 850 °C		$R(\Omega \mathrm{cm}^2)$	C (F/cm ²)	$f_{\rm o}$ (Hz)	Ea (eV)	п
	YCCC-YSZ	0.65	5.2×10 ⁻⁵	3500	1.0	0.25~0.33
HF	YCCC-SSZ	0.22	1.1×10 ⁻⁴	2300	1.1	0.16~0.30
arc	YCCN-YSZ	5.2	5.3×10 ⁻⁵	530	1.6	0.10~0.16
	YCCN-SSZ	0.96	8.3×10 ⁻⁵	1900	1.6	0.10~0.28
	YCCC-YSZ	0.33	6.9×10 ⁻³	70	0.8	0.34~0.50
LF	YCCC-SSZ	0.27	1.6×10 ⁻²	70	0.6	0.46~0.60
arc	YCCN-YSZ	3.2	1.1×10 ⁻³	45	0.6	0.18~0.37
	YCCN-SSZ	0.66	2.3×10 ⁻³	100	0.9	0.51~0.70

corresponding *E*a as well as reaction order (*n*) in the temperature and P_{H2} ranges used in the work.

Table II. Summary of R, C and f_0 for these four electrodes tested in air at 850 °C, as well as Ea in

the temperature range of 650~850 °C.

In air at 850 °C		R (Ωcm^2)	C (F/cm ²)	$f_{\rm o}$ (Hz)	Ea(eV)
YCCC-YSZ	Single arc	1.2	1.1×10 ⁻³	112	2.0
YCCC-SSZ	Single arc	1.0	1.4×10^{-3}	50	2.0
YCCN-YSZ	Single arc	36.7	1.5×10^{-4}	30	2.0
YCCN-SSZ	HF arc	12.6	3.8×10 ⁻⁴	32	2.1
ICCN-55Z	LF arc	8.7	1.2×10 ⁻³	5	1.7

Aim 2: Electrolyte/Barrier Layer Effect on ORR. Kinetics

18

W. Li, M. Gong, X. Liu*, Journal of Electrochemical Society 161 (2014) F551-F560

Aim 2: Electrolyte/Barrier Layer Effect on ORR Kinetics

How electrolyte improve the non-charge transfer processes?

W. Li, M. Gong, X. Liu*, Journal of Electrochemical Society 161 (2014) F551-F560

Aim 2: Electrolyte/Barrier Layer Effect on ORR Kinetics

Improved charge transfer and surface processes on SSZ/GDC <u>electrolyte</u>

W. Li, M. Gong, X. Liu*, Journal of Electrochemical Society 161 (2014) F551-F560

Aim 3: Optimized Barrier Layers Thickness

Diffusion profile observed in GDC that had been annealed at 1200° C for 115 h with LSF [Ref.1]

Bulk diffusivities as function of temperature [Ref. 2].

- Sakai, N., Yokokawa, H., Miyachi, M., and Sawata, A., in Solid Oxide Fuel Cells IX, J. Mizusaki and S. C. Singhal, Editors, PV 2005-07, p. 1703, The Electrochemical Society Proceedings Series, Pennington, NJ 2005 21
- 2. Sakai, N., Kishimoto, H., Yamaji, K., Horita, T., Brito, M. E. & Yokokawa, H. Solid Oxide Fuel Cells 10 (SOFC-X), Pts 1 and 2 7, 389-398

Aim 3: Optimized Barrier Layers Thickness

Objectives: Understand Cation diffusion & Zirconate formation kinetics in the vicinity of barrier layer as function of temperature, overpotential, barrier layer thickness etc.

Approaches: Secondary Ions Mass Spectroscopy (SIMS)

> Cross-sectional transmission electron microscopy (XTEM)

3-D Atom-Probe Tomography (3-D APT)

In operando EIS

22

Summary & Future Work

We have

- Demonstrated the feasibility of EPD barrier layer on YSZ
- Demonstrated the beneficial effect of sintering aids to reduce sintering temperature
- Started the investigation on ORR kinetics at Cathode/Barrier layer interface
- Initiated the characterization of cation diffusion profile in barrier layer

We are going to

- Optimize the EPD process
- Quantify the cation diffusion & zirconate formation kinetics as function of operation parameters and barrier layer thickness
- Test in industrial setting

Acknowledgement

- **NETL-SOFC Team**: Shailesh Vora, Heather Quedenfeld, Briggs White, Steven Markovich, Joe Stoffa, Travis Shultz (formal)...
- **NETL-ORD**: Kirk Gerdes' Group
- Industrial Partner: Hussein Ghezel-Ayagh (Fuel Cell Energy)
- My Postdoc and Students: Greg Collins, Shanshan Hu, Nan Zhang

