

Evaluation of Feedstock Materials for SOFC Performance Reliability

Brian J. Ingram

- J. David Carter
- E. Mitch Hopper
- Albert L. Lipson

Victor A. Maroni

Conclusions/Outline

- Fundamental surface investigations can lead to understanding of realword SOFC behavior
 - SOFC performance as defined by oxygen exchange rates is affected by both:
 - Gas phase environment
 - Solid-state surface composition affect the oxygen exchange rates
- Variability in feed stock materials is analyzed
 - Very good reproducibility in morphology and chemical composition
 - Phase analysis indicates some phase separation
 - "low cost" Raman analysis shown to be incredibly powerful
- A baseline button cell performance is being established
 - Statistical analysis required to provide meaningful analysis of feedstock materials

Argonne's background in SOFC technology

Developed ceria-based low temperature SOFC (~500°C)

Cell/stack design: TuffCell – metal supported SOFC

Technical support to DOE solid oxide fuel cells

 Cell/stack design planar monolithic SOFC (MSOFC) Invented glass-ceramic seal (basis of current formulations)

MSOFC

X-ray fluorescence/absorption

In situ APS

experiments

High Temperature Steam Electrolysis (HTSE) anode

• HTSE stack degradation analysis

Materials development:

and cathode materials

Cr-poisoning mechanism in SOFC cathode

Invented powder metal interconnect 440 SS

- Investigation of oxygen transport kinetics
 - Developed technique to investigate environmental perturbations on oxygen reduction kinetics
- Performance Reliability

2012-14

1980

1990

2000

2010

Today... SOFC research is closely aligned with Argonne's Electrochemical Energy Storage Department

Conclusions

- Fundamental surface investigations can lead to understanding of realword SOFC behavior
 - SOFC performance as defined by oxygen exchange rates is affected by both:
 - Gas phase environment
 - Solid-state surface composition affect the oxygen exchange rates
- Variability in feed stock materials is analyzed
 - Very good reproducibility in morphology and chemical composition
 - Phase analysis indicates some phase separation
 - "low cost" Raman analysis shown to be incredibly powerful
- A baseline button cell performance is being established
 - Statistical analysis required to provide meaningful analysis of feedstock materials

Electrochemical response to applied potential

GDC & YSZ lattice parameters do not change Surface reaction is rate-limiting step in ORR

B.J. Ingram, J.A. Eastman, K.-C. Chang, S.K. Kim, T.T. Fister, E. Perret, H. You, P.M. Baldo, P.H. Fuoss, Appl. Physics Lett. 101 (2012) 051603.

Oxygen exchange coefficients

Decreased $\epsilon_{steady-state}$ \rightarrow decreased time constant \rightarrow **increased oxygen exchange coefficient**

Modeling the oxygen exchange coefficient

Oxygen exchange coefficients extracted from kinetics of $\Delta[V_0]$ Depends on cathode surface AND cathode/electrolyte interface

Effects of 4% H₂O in oxidant atmosphere on SOFC cathode performance

Hopper, E.M.; Perret, E.; Ingram, B.J.; You, H.; Chang, K.-C.; Baldo, P.M.; Fuoss, P.M.; and Eastman, J.A.

Final words on H₂O and surface exchange rates

- H₂O reduces observed:
 - lattice strain
 - system resistance
 - surface exchange coefficient
- Sr segregation is unaffected by addition/removal of H₂O (on experiment time scale)
- The activation energy for oxygen surface exchange was reduced by approximately 0.1 eV
- Short term observation: does not account for long term degradation processes.

Conclusions

- Fundamental surface investigations can lead to understanding of realword SOFC behavior
 - SOFC performance as defined by oxygen exchange rates is affected by both:
 - Gas phase environment
 - Solid-state surface composition affect the oxygen exchange rates
- Variability in feed stock materials is analyzed
 - Very good reproducibility in morphology and chemical composition
 - Phase analysis indicates some phase separation
 - "low cost" Raman analysis shown to be incredibly powerful
- A baseline button cell performance is being established
 - Statistical analysis required to provide meaningful analysis of feedstock materials

What is needed to advance SOFC technology?

Background:

- SOFC designs and materials have sufficient maturity, activity and efficiency to be put into practice
- Cost, reliability, and lifetime need to continue to be addressed
- Focus on manufacturing practice will address cost and reliability

<u>Path forward</u>:

- Development of "low cost" analysis of feedstock materials
- Identify tolerance level of feedstock specifications

Improve reliability in the manufacturing and operation of SOFCs

Performance ↔ Properties relationship of cathode feedstock materials

Vet feedstock cathode powder properties with respect to cell performance reliability

<u>Morphology</u> Particle distribution, alignment, shape, and size Secondary particles

<u>Chemistry</u> Composition Phase distribution Stoichiometry

<u>Transport</u> Electrical/ionic conductivity Grain boundary

Focus on short term effect related to electrochemical performance in cells and "low cost" characterization techniques Assess LSCF batches of same composition: Identify and assess non-uniformity

4 lots of LSCF from **fuelcell**materials (FCM) All were designed with 5% A-site deficiency

		<u>Surf area</u>	<u>Particle size</u>
Sample#	Nominal Composition	<u>(m²/g)</u>	<u>(µm)</u>
LSCF-04	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	10 - 14	0.4 - 0.8
LSCF-03	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	4 - 8	0.7 - 1.1
LSCF-02	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	4 - 8	0.7 - 1.1
LSCF-01	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	4 - 8	0.7 - 1.1

Morphology comparison: Particle size analysis

Morphology comparison: Imaging LSCF

Particle morphology has excellent consistency between different lots at different time periods spanning 6 months to 1 year apart

* ICSD: $(La_{0.6}Sr_{0.4})(Co_{0.2}Fe_{0.8})O_3$ analyzed in the space group R-3c

LSCF XRD (synchrotron)

^{*} ICSD: $(La_{0.6}Sr_{0.4})(Co_{0.2}Fe_{0.8})O_3$ analyzed in the space group R-3c

LSCF XRD (synchrotron)

Evidence of second phase, phase impurity

^{*} ICSD: $(La_{0.6}Sr_{0.4})(Co_{0.2}Fe_{0.8})O_3$ analyzed in the space group R-3c

Previous work: Raman Spectroscopy

- Experience in using Raman microspectroscopy to identify unexpected phases
- Degradation study on O₂ electrodes for manufacturer supplied SOEC stacks
- Identified Co₃O₄, ZrO₂(mon), and ZrO₂(tet) zirconia under oxygen seal of electrolysis cell

Identify and assess non-uniformity in used SOEC stack components

J.R. Mawdsley, et al. Int. J. Hydrogen Energy. 34(9) 4198 (2009).

Raman phase analysis: second phase present

- Relatively weak reproducible Raman spectra
- Broad underlying features

 → scattering from the
 AA'BO3 and AA'BB'O3
 phases
- Sharper bands (

 Sharper bands (

 are
 known phonons of Co₃O₄
- Relative amount of Co₃O₄ is quite small
 - Co₃O₄ is a very strong Raman scatterer

Raman phase analysis: heterogeneous distribution

Raman phase analysis: heterogeneous distribution

- FCM provided XRD showing phase purity
- Heterogeneous distribution of Co₃O₄ second phase
- Similar to LSCF-03 (shown) and LSCF-02
- All intensities are normalized to the BaF₂ phonon intensity

Mapping of LSCF powder sample reveals Co₃O₄ rich regions, heterogeneously distributed

785 nm excitation laser spot diameter is ~10 μm

GSAS-II refinement of synchrotron diffraction

Sample	a/b lattice Parameter (Å)	c lattice Parameter (Å)	Unit Cell Volume (Å ³)	M20 (Fit quality)
ICSD*	5.508	13.441	353	NA
LSCF-01	5.499(6)	13.367(9)	350	482
LSCF-02	5.503(5) 5.503(1)	13.372(5) 13.373(1)	351	222 171
LSCF-03	5.503(8) 5.504(0)	13.373(1) 13.373(2)	351	171 220

LSCF = $(La_{0.6}Sr_{0.4})_{0.95}(Co_2Fe_{0.8})O_3$: Space group R-3c

- No clear differences in lattice parameter between LSCF-01, LSCF-02, and LSCF-03
- Could slight compression (ca. 0.07 Å) along c axis for FCM LSCF samples be due to reduced stoichiometry on the A site of the AA'BB'O3 structure?
- Other than obvious impurity phases, it is not clear whether XRD is sensitive to changes in critical materials properties.

Half-cell test protocol

Effect of impurity phase on performance and reliability. What is the tolerance to impurity phases?

Screen print 5 μ m layers on 250 μ m YSZ

GDC, 1300°C

LSCF, 950°C

Gold , 800°C

Standardized testing procedure (5 temperatures)

- Galvanostatic 100 mA, 1 hour
- Potentiodynamic ±100 mV @ 1 mV / sec
- AC-IS ±50 mV vs OCV

Button cell variability must be considered.

Electrochemical analyses: AC-IS repeatability

Electrochemical analyses: Temperature dependence repeatability

 $E_a = 1.55 \pm 0.07 \text{ eV}$ (b) = 1.44±0.05 eV (a) E_a= 1.50±0.13 eV (b) = 1.49±0.13 eV (a)

Future direction - Discussions

- Determine the variability and tolerance of cathode materials composition and phase to maintain predictable performance and reliability.
- Determine key indicators of performance and reliability of the SOFC cathode
- Link simple and rapid characterization methods to high temperature performance and reliability

Thank you

- Jeffery A. Eastman (ANL, MSD)
- Kee-Chul Chang (ANL, MSD)
- Seong Keun Kim (ANL, MSD)
- Timothy T. Fister (ANL, CSE)
- Edith Perret (ANL, MSD)
- Hoydoo You (ANL, MSD)
- Mr. Peter M. Baldo (ANL, MSD)
- Paul H. Fuoss (ANL, MSD)
- Hua Zhou (ANL, APS)
- Michael Haji-Sheikh (NIU)
- Gregg Westberg (NIU)
- Kirk Gerdes (NETL)
- Harry Abernathy (NETL)
- Jeffry Stevenson (PNNL)

- The U.S. DOE Office of Fossil Energy's Solid Oxide Fuel Cells Program; National Energy Technology Laboratory; especially Briggs White
- The Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357
- fuelcellmaterials.com
- Fuel Cell Energy
- LG Fuel Cell Systems, Inc

Conclusions/Outline

- Fundamental surface investigations can lead to understanding of realword SOFC behavior
 - SOFC performance as defined by oxygen exchange rates is affected by both:
 - Gas phase environment
 - Solid-state surface composition affect the oxygen exchange rates
- Variability in feed stock materials is analyzed
 - Very good reproducibility in morphology and chemical composition
 - Phase analysis indicates some phase separation
 - "low cost" Raman analysis shown to be incredibly powerful
- A baseline button cell performance is being established
 - Statistical analysis required to provide meaningful analysis of feedstock materials