

An Experimental and Modeling Study of NO_x- CO Formation in High Hydrogen Content (HHC) Fuels Combustion in Gas Turbine Applications DE-FE0012005

Tanvir Farouk Bihter Padak

University of South Carolina, Columbia, SC 29208, USA

Fred Dryer

Princeton University, Princeton, NJ 08544, USA

2014 University Turbine System Research Workshop West Lafayette, IN

October 21st – 23rd, 2014

Project Participants

University of South Carolina and Princeton University

PI: **Dr. Tanvir Farouk**, Assistant Professor University of South Carolina– Mechanical Engineering

- Sheikh Farhan Ahmed Graduate Student
- Fahd Ebna Alam Graduate Student

Co-PI: Dr. Bihter Padak, Assistant Professor University of South Carolina– Chemical Engineering

• Nazli Asgari – Graduate Student

Co-PI: Dr. Frederick Dryer, Professor

Princeton University – Mechanical and Aerospace Engineering

• Mac Haas – Graduate Student

UNIVERSITY OF

Objectives

- Detailed and validated coupled HHC + NO_x kinetic model
- New experimental data for speciation for the oxidation kinetics of HHC fuel compositions in presence of impurities.
- Understanding of CO, NO and NO₂ formation and concentration in shear layer flow regimes (hot and cold flow interactions). NO \rightarrow NO₂ conversion in hot-cold shear layer interaction and EGR.
- Detailed and reduced kinetic model for HHC fuels including detailed fuel compositions and NO_{x} .

Tasks

- Study of reactivity and speciation data of NO_x under various conditions
- Studies of CO, NO, $\rm NO_2$ formation and conversion for $\rm NO \rightarrow \rm NO_2$ in shear/mixing layers
- Studies of high pressure HHC fuel kinetics using High Pressure Laminar Flow Reactor (HPLFR)
- Kinetic assessment, validation and development of a comprehensive HHC fuel + NO_x kinetic mechanism

Presentation Outline

- Research Team Members
- Project Objectives
- Research Tasks
- Year 1 progress

Kinetic Modeling of NO_x formation in HHC Fuels
– Tanvir Farouk

Experimental Setup for Speciation Measurements – Bihter Padak

Measurement of Small Species Data – Frederick Dryer

• Summary

Kinetic Modeling

Mechanisms

Model Performance: Jet Stirred Reactor

• Jet stirred characteristic reaction time determined based upon predicted laminar flame speed. Burke et al hydrogen model was substituted f for the comparable submodel in the named mechanisms.

- Model predictions suggest that experimental NO_x results are principally dependent on thermal NO_x generation.
- The GRI-Mech 3.0 reaction rate constant for N2+O-NO+N is substantially less than in Konnov (which uses a critical review result)

Konnov model: Combust Flame 156 (11) (2009) 2093-2105 GRI-Mech 3.0: GRI-Mech 3.0. <u>http://www.me.berkeley.edu/gri_mech/</u> Burke et al. (2012) ; Int. J. Chem. Kinet 44 (7) (2012) 444-474

Data from Steele, Ph.D, University of Washington, 1995. Predictions from prior Industrial sponsored research at Princeton (SIEMENS)

Performance of H₂- NO_x Models

Temporal evolution of species evolution for H_2 oxidation at elevated pressure. Experimental data of Mueller et al. IJCK, (1999) 113-125.

More target data for NO_x !

- Fuel oxidation kinetics very good agreement with experimental measurements.
- Different NO_x pathways inconsistency in NO_x concentration predictions.
- No_xfor pure H₂ is not consistent.

Temporal evolution of NO, NO_2 evolution for H_2 oxidation at elevated pressure.

Performance of H₂- NO_x Models

3.0

2.0

Time (s)

0.0

0.5

1.0

1.5

2.5

3.0

3.5

4.0

4.5

3.5

IJCK, (1999) 113-125.

10

H₂- NO_x Models

Reactions	Rasmussen	Konnov	Dagaut	
NO+OH(+M)=HONO(+M)	\checkmark			
NO ₂ +H ₂ =HONO+H	\checkmark			
NO ₂ +HO ₂ =HONO+O ₂	\checkmark			
NO ₂ +HCO=HONO+CO	\checkmark			
NO ₂ +CH ₂ O=HONO+HCO	\checkmark		\checkmark	
HNO+NO ₂ =HONO+NO	\checkmark			
HONO+O=NO ₂ +OH	\checkmark		\checkmark	
HONO+OH=NO ₂ +H ₂ O	\checkmark			
HONO+NO ₂ =HONO ₂ +NO	\checkmark			
HONO+HONO=NO+NO ₂ +H ₂ O	\checkmark	\checkmark		
NO ₂ +CH ₂ O=HNO ₂ +HCO	\checkmark	\checkmark		
HNO ₂ +O=NO ₂ +OH	\checkmark		\checkmark	
HNO ₂ +OH=NO ₂ +H ₂ O	\checkmark		\checkmark	
NO ₂ +OH(+M)=HONO ₂ (+M)	\checkmark		\checkmark	
HONO ₂ +H=H ₂ +NO ₃	\checkmark			
HONO ₂ +H=H2O+NO ₂	\checkmark			
HONO ₂ +OH=H ₂ O+NO ₃	\checkmark			
HNO ₂ (+M)=HONO(+M)	\checkmark			
HONO ₂ +H=OH+HONO				
NO ₂ +H ₂ =HNO ₂ +H				
NO ₂ +HO ₂ =HNO ₂ +O ₂	\checkmark			

- HONO pathway is a source of difference.
- Most models have different HONO pathways HNO_2 , $HONO_2$ are unaccounted for.
- Updates to HONO pathways and species.

H₂- NO_x Models – Variation in Reaction Rates

Orders of magnitude differences in the rates

H₂- NO_x Models – Proposed Updates

Reactions	
NO ₂ +CH ₂ O=HONO+HCO	
HONO+O=NO ₂ +OH	
HONO+NO ₂ =HONO ₂ +NO	
NO ₂ +CH ₂ O=HNO ₂ +HCO	
HNO ₂ +O=NO ₂ +OH	
HNO ₂ +OH=NO ₂ +H ₂ O	
NO ₂ +OH(+M)=HONO ₂ (+M)	
HONO ₂ +H=H ₂ +NO ₃	
HONO ₂ +H=H2O+NO ₂	
HONO ₂ +OH=H ₂ O+NO ₃	
HNO ₂ (+M)=HONO(+M)	
HONO ₂ +H=OH+HONO	
NO ₂ +H ₂ =HNO ₂ +H	
NO ₂ +HO ₂ =HNO ₂ +O ₂	

• HONO pathway is a source of difference.

• Most models have different HONO pathways – HNO_2 , HONO₂ are unaccounted for.

• Updates to HONO pathways and species.

H₂- NO_x Models – Proposed Updates

Reactions	
NO ₂ +CH ₂ O=HONO+HCO	
HONO+O=NO ₂ +OH	
HONO+NO ₂ =HONO ₂ +NO	
NO ₂ +CH ₂ O=HNO ₂ +HCO	
HNO ₂ +O=NO ₂ +OH	
HNO ₂ +OH=NO ₂ +H ₂ O	
NO ₂ +OH(+M)=HONO ₂ (+M)	
HONO ₂ +H=H ₂ +NO ₃	
HONO ₂ +H=H2O+NO ₂	
HONO ₂ +OH=H ₂ O+NO ₃	
HNO ₂ (+M)=HONO(+M)	
HONO ₂ +H=OH+HONO	
NO ₂ +H ₂ =HNO ₂ +H	
NO ₂ +HO ₂ =HNO ₂ +O ₂	

• HONO pathway is a source of difference.

• Most models have different HONO pathways – HNO_2 , HONO₂ are unaccounted for.

• Updates to HONO pathways and species.

Flow Reactor Reactivity – Base Cases

Discrepancy between predictions and measurements – NO_x but also H_2/CO oxidation !!!

Rasmussen C. L., Hansen J., Marshall P, Glarborg P., IJCK, (2008), 454-480

Flow Reactor Reactivity – HONO updates

Flow reactor reactivity data for $CO/H_2/NO_x$ oxidation at 50 bar and 0.063 equivalence ratio. Experimental data for that of Rasmussen et al. IJCK, (2008) 454 – 480. Konnov NO_x model.

- •Inclusion of additional HONO pathways significantly improves the NO_x predictions.
- An increase in the reactivity of CO is also apparent

- Oxidation of fuel is influenced!

Flow Reactor Reactivity – HONO updates

Flow reactor reactivity data for $CO/H_2/NO_x$ oxidation at 20 bar and 0.063 equivalence ratio. Experimental data for that of Rasmussen et al. IJCK, (2008) 454 – 480. Konnov NO_x model.

• Similar trends are observed for 20 bar conditions.

Flow Reactor Reactivity – HONO updates

• Similar performance improvement for the Dagaut model.

• Dagaut NO_x contains a limited subset of HONO pathway.

Flow reactor reactivity data for $CO/H_2/NO_x$ oxidation at 50 bar and 20 bar for 0.063 equivalence ratio. Experimental data for that of Rasmussen et al. IJCK, (2008) 454 – 480. Dagaut NO_x model.

Possible Sources of Discrepancy

• Simulations are conducted for an isothermal configuration!!

Ramp up and cool down regions in experiments

Prescribed temperature profile in the Rasmussen et al. flow reactor experiments

Influence of Prescribed Temperature Profile

• Limited temperature profile simulations were conducted – due to the limited set of available data.

• Temperature profile does affect the predictions – ramp up and cool down influences the kinetics.

Differences in HONO

HONO₂

+H₂O

99%

+OH(+M)

99%

-OH

NO₃

Konnov HONO

HONO updates

HNO₂

91%

(+M)

72%

- +H +OH(+M)HONO $-H_2$ 20% +H +H₂O 15% 85% NO 72% -OH 70% -H₂ $+NO_2+H_2O$ 100% NO₂ $+OH -HO_2$ $+O_2$ 99%-NO2 +NO+O
- HONO is solely produced from NO and NO₂ and is consumed only 32% to NO₂ and the rest to N_2O_3 and N_2O_4 , which are eventually contributing in the formation of NO₂.
- Significantly different from the Konnov-HONO subset.
- HONO is produced from NO₂, NO and HNO₂ and is consumed mainly to form NO₂ and NO.
- The species HNO_2 and $HONO_2$ have contribution in the HONO paths through NO_2 and NO_3 respectively.

HONO Pathway - CO Oxidation

+NO(+M)

100%

 N_2O_3

 $+H_2O$

 N_2O_4

100%

+M

-HNO

100% +H₂O

57%

HONO Updates on Ignition Delay Predictions

A. Keromnes, et al., "An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas mixture oxidation at elevated pressures", Combustion and Flame, 160 (2013), 995 – 1011. 23

Summary

- Potential critical pathways in H₂-NO_x has been identified
- HONO, HNO₂, HONO₂ updates are proposed
- The updates are found to have significant effect on the over all predictions of NO_x concentration in flow reactor reactivity over a broad range of pressures.
- The updates are also found to have a major influence on the CO oxidation which is critical to syngas combustion

Experimental Setup for Speciation Measurements

High Pressure Combustion Experiments

- Reactivity and speciation data of NO_x at 1 – 15 atm, 600 – 1400 K
- Post-combustion NO_X formation will be measured with respect to:
 - Composition
 - Radial shearing from recycle

Experimental setup for atmospheric pressure experiments

Burner Tests

Changing ϕ (0.4-1) at constant flow rate of 4LPM, H₂/CO:1

φ = 0.4

φ = 0.7

φ = 1

• Fuel-lean mixture (ϕ =0.4) results in cellular flame

Flame Stability

Flame Stability With Argon

- Flame perturbations due to air entrainment
- Use argon as shroud gas

Flame Temperature vs Equivalence Ratio

an increase in flame temperature

Radial Temperature Profile

Cooling circuit

Radial Temperature Profile

Radial temperature profile 2 mm above the burner surface

Temperature/concentration gradients towards the outer parts of the flame in McKenna burners *

*Kastelis et al. WWAI Conference 2008.

Temperature (K)

r (mm)

34

Radial and Axial Temperature Profiles

Radial temperature profile

Axial temperature profile

- Species profiles vs. single point measurements
 - Movable probe with a translation stage
 - Water cooled probe made of quartz
- Speciation of nitrogen oxides (NO, N₂O, NO₂) vs. total NO_x data
 - Employ FTIR for measurements
- Bruker Tensor 27 IR bench
 - coupled with MCT detector for increased sensitivity
- Variable path length cell with maximum optical length of 8m

NO_x Measurements

- Detailed NOx speciation data is needed to validate/develop kinetic models
- Experiments

Summary

- Burner has been characterized
- Temperature profiles were obtained for the model
- Calibration of FTIR for NO_x species was done
- Future work
 - NO_x measurements from the burner
 - Construction of high-P combustion chamber
 - NO_x measurements at high P
 - Effects of diluents
 - NO_x, CO measurements in shear/mixing layer

Measurement of Small Species Data

HPLFR Schematics

Facility Overview

Reactor Subsystem Detail

Propene (C₃H₆) Oxidation in HPLFR

Symbols – HPLFR measurements; Lines – 0-D Kinetic model predictions of recent comprehensive NUI Galway Model¹

- Resonantly-stabilized allyl radical (aC₃H₅) suppresses reactivity relative to radicals formed from other small olefins and saturated hydrocarbons
 - This suppression is a particular feature of propene otherwise not represented by most natural gas/LPG fuel components
- Many older models did not include treatment of chemistry subsequent to allyl self reaction (aC₃H₅+ aC₃H₅→ products)
 - This led to especially poor predictions of ignition

41

• Depending on composition, the sensitivity to aC_3H_5 chemistry may be masked by higher reactivity of blend components (e.g., H_2 or C_3H_8) 1. Burke et al. Combust Flame. 161:2765 (2014)

Propene (C₃H₆) Oxidation in HPLFR¹

 $\label{eq:P} P = 15 atm \rightarrow \text{Highest pressure for species-resolved validation data appearing in the literature} \\ T = 800 \ K \rightarrow \text{Enhances sensitivity to reactions responsible for fuel destruction}$

Symbols – HPLFR measurements; Lines – 0-D Kinetic model predictions of recent NUI Galway Model¹

 Good agreement between measurements and model predictions

Propene (C₃H₆) Oxidation in HPLFR¹

 $P = 15 atm \rightarrow \text{Highest pressure for species-resolved validation data appearing in the literature } \\ T = 800 \text{ K} \rightarrow \text{Enhances sensitivity to reactions responsible for fuel destruction }$

Symbols – HPLFR measurements; Lines – 0-D Kinetic model predictions of recent NUI Galway Model¹

 Good agreement between measurements and model predictions

VPFR Schematics

CH₄/ C₂H₆ Blend Oxidation in VPFR

- Wetter natural gas to be expected from shale gas "revolution"
- Present figure is illustrative does not consider gas separation/conditioning
 e.g., associated with Mariner West/East pipelines from Marcellus Shale
- As will be shown, C₂H₄ is a key intermediate of C₂H₆ oxidation, so C₂H₆ fairly represents the C₂ fraction

CH₄/ C₂H₆ Blend Oxidation in VPFR

Run Number	P (atm)	T _{initial} (K)	CH₄ Mole Fraction (ppm)	C₂H ₆ Mole Fraction (ppm)	O₂ Mole Fraction (ppm)	φ (approx .)
1	10	1052	4972	0	10105	1.0
2	10	1050	5170	52	10118	1.0
3	10	1048	4938	101	10507	1.0
4	10	1050	5089	212	9940	1.0
5	10	1029	5800	0	23600	0.5
6	10	1029	5550	180	11750	1.0
7	10	1026	5500	180	23800	0.5
8	18	970	5900	0	23200	0.5

Design of Experiments

- Runs 1-4: compare methane reactivity as ethane fuel fraction increases from $0\rightarrow 4\%$
- Runs 5&7: compare lean reactivity for C_2H_6 fuel fractions of 0% and 3%
- Runs 6&7: compare reactivity of 3% C_2H_6 blends at phi of 0.5 and 1.0
- Run 8: higher pressure increases overall reactivity for CH₄, requires lower temperature for same reaction timescale

CH₄/C₂H₆ Blend Oxidation in VPFR

Runs 1 – 4: Effect of increased C₂H₆ doping in CH₄

- Overall initial reactivity increases <u>fourfold</u> for just 4% C₂H₆ in CH₄
- Enhanced reactivity due to ethane doping should also have significant effect on ignition behavior
 - Significant "extra" reactivity will diminish at flame conditions

CH₄/C₂H₆ Blend Oxidation in VPFR

Runs 1 – 4: Effect of increased C_2H_6 doping in CH_4 P = 10 atm, $T_0 = 1050$ K

- Methane generates own pool of C_2H_6 via $CH_3+CH_3(+M) \rightarrow C_2H_6(+M)$
- Significant flux of $C_2H_6 \rightarrow C_2H_4$ via $C_2H_5(+M) \rightarrow C_2H_4 + H(+M)$
- Enhanced initial reactivity due to ethane doping partly due to chemistry subsequent to production of H atom from C₂H₅

CH₄/C₂H₆ Blend Oxidation in VPFR

Run 1: CH₄ Fuel, P = 10 atm, $T_0 = 1050$ K, $\phi \sim 1.0$

- The CO₂ generated is a facility effect (not explained by homogeneous gas phase kinetics) for modeling purposes, can be treated by **reinitialization**
- Mixer/Diffuser-affected region extends to ~0.2 seconds can also be treated by re-initialization
- Alternatively, a time shift will accurately predict major species profiles

Dryer et al., Prog. En. Combust. Sci. (2014) 44:19-39

Overall Summary

- Potential critical pathways in H_2 -NO_x has been identified.
- HONO, HNO₂, HONO₂ updates are proposed.
- The updates are found to have significant effect on the over all predictions of NO_x concentration in flow reactor reactivity over a broad range of pressures.
- The updates are also found to have a major influence on the CO oxidation which is critical to syngas combustion.
- Experiments Burner has been characterized
 - -Temperature profiles were obtained for the model
 - Calibration of FTIR for NO_x species was done
- HPLFR has been characterized and experiments are being conducted to obtain data on small hydrocarbon oxidation.
- Oxidation of methane, ethane blends at various ratios are conducted to identify the influence of trace hydrocarbon species on oxidation kinetics.
- Computational re-initialization for homogenous calculations to accurately simulate small species kinetics has been developed.

Thank You

Diluent CH₄ Oxidation at High P, Intermediate T

Model Comparisons to Flow Reactor Data – Initialization Approaches

Kinetic Model – Aramco Mech 1.3; Data – Amano et al. "Run 1" (4972/10105 ppm CH₄/O₂ in N₂, 1052 K, 10 atm)

Comparison of Initialization Approaches

• Coordinate (Time)-Shift matches overall reactivity gradient; however, cannot predict initial mole fraction deviations – see CH₂O, CO₂ profiles

Simple Reinitialization

exactly matches "initial" mole fraction at designated point, but gradient is poorly predicted

• Approach does not account for unmeasured reactive intermediates **so overall reactivity is TOO LOW** – see CH_4 , H_2O , CO, C_2H_6 , C_2H_4

Final Analysis

- For long time constant species unaffected by initialization perturbations (here, coordinate (time)-shift is adequate for matching profiles and assessing relative reactivity
- **Simple Reinitialization** exactly matches "initial" mole fraction at designated point, but gradient is poorly predicted
- Approach does not account for unmeasured reactive intermediates **so overall** reactivity is TOO LOW see CH₄, H₂O, CO, C₂H₆, C₂H₄

Run 4: CH₄ + 4% C₂H₆ Fuel, P = 10 atm, T₀ = 1050 K, $\phi \sim 1.0$

- Here, initial CO₂ generated is a facility effect; later CO₂ is formed by CO oxidation (primarily CO+OH →CO₂+H)
- For all of Runs 1-4, CO to H₂O ratio is between 2-2.5 over most of the reaction profile – provides insight into comparative rates of OH abstraction reactions of CH₄/C₂H₆/C₂H₄/CH₂O and the relatively slow CO+OH bottleneck

Vertical temperature profile in the burner center

Burner Tests

Changing the flow rate (4-6LPM) at constant φ :1 and H₂/CO:1

Increasing flow rate increased flame height