Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High- Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions: DOE UTSR DE-FE0007099

> Robert P. Lucht and William E. Anderson Purdue University West Lafayette, Indiana

2014 University Turbine Systems Research Workshop West Lafayette, IN 21 October, 2014

Outline of the Presentation

- Research Objectives
- Gas Turbine Combustion Test Rigs
- Laser Diagnostic Techniques
- Experimental Results
- Summary and Future Work

Research Objectives

- Reacting Jet in Crossflow (RJIC) is a flow field that is of fundamental interest and practical importance.
- Primary objective is to investigate the structure and dynamics of reacting jet injected into a subsonic, high-pressure crossflow.
- High-pressure RJIC flow fields investigated using advanced, high-data-rate (5-10 kHz) laser diagnostic methods.

Research Objectives

- Numerical simulation of the RJIC flow field is challenging but tractable. Development of benchmark quality data set for comparison with numerical models will be very valuable.
- Mixing and flameholding are issues of critical importance for understanding the generation of pollutant species as a result of the RJIC.
- Effect of the RJIC on combustion instabilities is also being investigated.

Research Objectives

Purdue Gas Turbine Combustion Facility (GTCF)

High Pressure Lab System	Maximum Flow Capacity	Max Operating Condition
Natural Gas Heated High Pressure Air	9 lbm/s 4 kg/s	700 psi / 1000 F 1400 F in 2015
Electric Heated Air or Nitrogen	1 lbm/s 0.5 kg/s	600 psi / 1000 F
Nitrogen	5 lbm/s 2 kg/s	1,500 psi
Liquid Aviation Fuel (Kerosene)	1 lbm/s 0.5 kg/s	1,500 psi
Natural Gas PURDUE	1 lbm/sec 0.5 kg/s	3500 psi

High-Pressure RJIC Emissions Test Rig: Present Configuration

High-Pressure RJIC Test Rig: Present Configuration

High-Pressure Distributed Combustion System (DCS)

Main Fuel (Natural Gas)

High-Pressure RJIC Test Rig in Operation

Purdue Instability Test Rig

- P_{chamber} ~ 0.7-1.1 MPa
- Preheat Air Temp ~ 400C
- Air mdot ~ 0.41 kg/s
- Natural gas fuel for HE flame

Cross Flow Mode	1L	2 L	3 L	4 L	5L
Freq [Hz]	100	195	299	389	498

Test rig provides acoustic environment for transverse jet injection

High-Repetition-Rate Diagnostic Techniques: Current Capabilities

- 5-10 kHz PIV dual-head Edgewave laser, 30 W per head at 532 nm
- 5-10 kHz OH PLIF Credo dye laser pumped by a 90 W Edgewave laser up to 7W of ultraviolet (1.4 mJ/pulse at 5 kHz)

Current High-Repetition-Rate Laser System

Edgewave Diode-Pumped Solid State Nd:YAG Laser: 5 kHz Rep Rate, Dual-Head, 6 mJ/Pulse at 532 nm, 7 nsec Pulses

Sirah Credo Dye Laser 5 kHz Rep Rate, 500 µJ/Pulse at 283 nm (2.5 W average power in UV)

Seeding for High-Speed PIV

- High-speed PIV offers possibility of acquiring significant PIV data sets even in highpressure systems with windows.
- Particle seeding turned on and off, synchronized with PIV data acquisition.
- Dynamics of seeder must be tuned by trial and error for good signal, maximum run time.

Experiment Operating Condition: Test Matrix

		Cross Flow	Operating	Condition		
Operating Pressure (atm)				5.5		
Operating Temperature (K)				723		
MCZ Air Flow Rate (kg/s)				0.39		
MCZ Equivalence Ratio, φ _{main}				0.5		
Main Flow Reynolds Number(NR), Re _{main}				105000		
Main Flow Reynolds Number(R), Re _{main}				61000		
Non-Reacting Jet in Cross Flow						
IET	Tomporature (K)	Momentum Flux	Density	Jet Reynolds		
JET	remperature (K)	Ratio, J	Ratio, S	Number, Re _{jet}		
Hot Air	400	3	1	16900		
Hot Air	400	8	1	27600		
RJICF Conditions						
FUEL		Momentum Flux	Density	Jet Reynolds	. -0.0	4 - 20
JET	remperature (K)	Ratio, J	Ratio, S	Number, Re _{jet}	$\psi_{jet} = 0.9$	$\psi_{\text{jet}} = 3.0$
Premixed	400	3	2.5	27500	ΔT = 36 K	ΔT = 145
NG	400	8	2.5	45000	ΔT = 52 K	ΔT = 212
					40%/60%	50%/50%
H./N.	280	3	4.25	72000	ΔΤ = 28 Κ	ΔT = 131
112/112	280	8	4.25	118000	ΔT = 64 K	ΔT = 182

•The NR jets and premixed NG jets are preheated to T = 400K. (After mixing with particle carrying cold air) •The H_2/N_2 jets are at ambient temperature.

CAD Representation of the PIV Experimental System

RJICF Schematic : PIV Measurement Planes

5 measurement planes selected to acquire a threedimensional picture of the flow field.

Raw Particle Images

Conditions : J = 3 Φ_{jet} = 3.0 Plane : z/d = 5mm

Conditions : J = 3 Φ_{jet} = 3.0 Plane : z/d = 48mm

Image showing the seeded jet with a net downward direction indicated by the arrow due to the swirling crossflow. Image showing the seeded jet with a net upward direction indicated by the arrow due to the swirling crossflow.

3777 image pairs captured in order to obtain good turbulence statistics

Reacting Jet in Swirling Crossflow: Variation of time averaged V_x , V_v and ω_z at various z planes for J=3 Φ =3

Reacting Jet in Swirling Crossflow: Time-Averaged V_x and V_y for H₂/N₂ Jets with J = 8 and 3

Reacting Jet in Swirling Crossflow: Time-Averaged Vorticity and Streamlines for H_2/N_2 Jets with J = 8 and 3

Time Averaged three dimensional wake structure of the RJICF

CAD Representation of the OH-PLIF Experimental System

UNIVERSIT

The laser sheet is traversed to visualize the jet flame at 19 different planes to obtain 3-dimensional information on the flame structure

Sequence of single-shot OH-PLIF images: J =3, fuel is premixed natural gas, ϕ_{iet} = 3, measurement plane z = 38.1 mm

Sequence of single-shot OH-PLIF images of J =8 fuel is premixed natural gas, ϕ_{jet} = 3, measurement plane Z = 38.1 mm

Sequence of single-shot OH-PLIF images: J =8, fuel is 40% H_2 and 60% N_2 , measurement plane z = 38.1 mm.

Sequence of single-shot OH-PLIF images: J =8, fuel is 40% H_2 and 60% N_2 , measurement plane z = 42.5 mm.

PURDUE UNIVERSITY OH PLIF single-shot images for the 40% $H_2/60\%$ N_2 , J=3 case acquired at the midplane. Two significant events are highlighted in the two images, (a) flame roll-up and (b) flame shedding.

Schematic Diagram of Simultaneous PIV/OH-PLIF Experimental System

PIV Camera

Simultaneous PIV/OH-PLIF Measurement Planes

- 1. Z = 5 mm
- 2. Z = 10 mm
- 3. Z = 15 mm

Instantaneous velocity vector fields overlapped on OH PLIF and vorticity magnitude: $J=3 H_2/N_2 40\%/60\% z = 10 mm$

Repetition Rate : 10 kHz

Instantaneous velocity vector fields overlaid on OH PLIF and vorticity magnitude: J=8, H_2/N_2 40%/60%, z = 10 mm

Repetition Rate : 10 kHz

Sequence of OH-PLIF images measured at z = 10 mm

UNIVERSITY.

Sequence of velocity vectors and flame front edges overlaid on x-velocity magnitude measured at z = 10 mm

Sequence of Velocity vectors and flame front edge overlaid on y-velocity magnitude measured at z = 10 mm

 $J = 8, H_2/N_2:40\%/60\%$ $J = 8, Premixed NG, \phi = 0.9$

Sequence of velocity vectors and flame front edges overlaid on z-vorticity magnitude, measurement plane z = 10 mm

 $J = 8, H_2/N_2:40\%/60\%$

J = 8, Premixed NG, ϕ = 0.9

Sequence of velocity vectors and flame front edges overlaid on z-vorticity magnitude, measurement plane z = 10 mm

 $J = 8, H_2/N_2:40\%/60\%$

J = 8, Premixed NG, φ = 0.9

Purdue Instability Test Rig

- P_{chamber} ~ 0.7-1.1 MPa
- Preheat Air Temp ~ 400C
- Air mdot ~ 0.41 kg/s
- Natural gas fuel for HE flame

Cross Flow Mode	1L	2 L	3 L	4 L	5L
Freq [Hz]	100	195	299	389	498

Test rig provides acoustic environment for transverse jet injection

4kHz Intensified Chemiluminescence Imaging of Dump Flame and Injected Transverse Jet. 432nm (+/-8 nm) (CH*/CO₂*).

Champer Acoustic Mode Shapes

Physics of Heat Release Coupling With Unsteady Crossflow

POD and DMD used as low dimensional approximations to identify, track, quantify dominant coupling structures

POD: Modes 1 to 7 at Frequency 771 Hz

POD: Modes 1 to 7 at Frequency 386 Hz

60/40 H2/N2 Transverse Jet Injection

H2/N2 Mixture

PSD Crossflow Raw Pressure

<u>JICF Parameters:</u> Jet Exit = 5.8 mmMomentum Flux Ratio J=6Jet Re = 30k

UNIVERSITY.

Currently setting up for OH-PLIF and PIV for this configuration

High-Repetition-Rate PIV/OH PLIF Measurements: Summary

- 5 and 10 kHz PIV and OH PLIF measurements were performed for the reacting jet in a swirling vitiated crossflow with the extended nozzle configuration, with the jet being seeded with the TiO₂ particles.
- The mean flow field shows the strong influence of a counter-rotating vortex pair in the planes close to the nozzle.
- The swirling crossflow is found to affect the jet, with its impact being felt significantly in the planes closest and farthest from the nozzle.
- Flame structure is very different for H₂/N₂ and NG/air jets. Momentum flux ratio J also has a significant effect.

Future Research

- PIV/OH PLIF
 Measurements in
 Combustion
 Instability Test Rig
- PIV/OH PLIF
 Measurements in
 Water-Cooled
 Combustion Test
 Rig with Enhanced
 Optical Access

New Gas Turbine Test Rig Facility in Design Phase

- Will include five new 500 square-foot test cells and a 2000 square-foot laser laboratory with excellent temperature and humidity control. Groundbreaking is scheduled for early next year, completion in CY2015.
- A new air heater with the capability of 4 kg/s at 40 bar and 1100 K (1500°F) has been ordered and will be installed next year.

New Gas Turbine Test Rig Facility in Design Phase

Acknowledgements

- PhD graduate students: Warren Lamont (now at GE Global Research Center), Mario Roa, Chris Fugger, and Pratikash Panda, research scientist Dr. Sameer Naik.
- Managing Director of Zucrow Laboratories: Scott Meyer.
- Collaboration and funding support from Siemens on the development and operation of the high-pressure combustion test rig.
- DOE UTSR Project Number DE-FE0007099, former Project Manager Robin Ames, current Project Manager Steven Richardson.

