Development and Experimental Validation of LES Techniques for the Prediction of Combustion-Dynamic Processes in Syngas Combustion

Matthias Ihme and James F. Driscoll

Graduate Students: Hao Wu, Wail Lee Chan, Yuntao Chen, and Patton Allison

Flow Physics and Computational Engineering
Mechanical Engineering Department, Stanford University
Research Objectives

Joint computational and experimental research program to develop simulation techniques for

- Prediction of autoignition and unstable combustion processes, at GT-relevant operating conditions
- Perform analysis of facility effects in flow-reactors and rapid compression machines to reconcile observed discrepancies between measurements and simulations
Overview

Research objectives

Computational research effort

- Characterization of facility effects in flow reactors
- LES modeling of dual-swirl gas-turbine model combustor

Conclusions
Overview

Research objectives

Computational research effort
- Characterization of facility effects in flow reactors
- LES modeling of dual-swirl gas-turbine model combustor

Conclusions
Background

Facility-induced non-idealities can play critical role in affecting chemical kinetics and combustion

- Ignition delay
- Combustion transients
- Flame-speed

Sources of experimentally-observed discrepancies are facility-dependent

- Rapid compression engines, Flow reactors, Shock tube

Uncertainties introduce systematic and stochastic uncertainties → require quantitative understanding
Motivation

Objectives

- Develop model to quantify effects of mean-flow and inhomogeneities of temperature and mixture composition on ignition dynamics

Approach

- Employ particle method; enables consideration of
 - Detailed chemistry effects
 - Turbulent mixing
 - Reduces to classical homogeneous reactor model under idealized conditions
Flow-Reactor Facility

Peschke & Spadaccini, (1985); Santoro (2009)
Parametric Analysis

Develop Eulerian parabolized formulation to describe ignition and combustion dynamics

Stationary flow-field:

Mixture Fraction: \(\bar{\rho} \bar{u} \partial_t \bar{Z} = \frac{1}{r} \partial_r \left(r x_T \partial_r \bar{Z} \right) \),

Progress Variable: \(\bar{\rho} \bar{u} \partial_t \bar{C} = \frac{1}{r} \partial_r \left(r x_T \partial_r \bar{C} \right) + \bar{\rho} \bar{\omega}_C \),

Enthalpy: \(\bar{\rho} \bar{u} \partial_t \bar{h} = \frac{1}{r} \partial_r \left(r x_T \partial_r \bar{h} \right) \),

Mixture Fraction Variance: \(\bar{\rho} \bar{u} \partial_t \bar{Z}^n = \frac{1}{r} \partial_r \left(r x_T \partial_r \bar{Z}^n \right) + 2 x_T \left(\partial_r \bar{Z} \right)^2 - C_\phi \frac{\mu_T}{\Delta^2} \bar{Z}^n \),

Progress Variable Variance: \(\bar{\rho} \bar{u} \partial_t \bar{C}^n = \frac{1}{r} \partial_r \left(r x_T \partial_r \bar{C}^n \right) + 2 x_T \left(\partial_r \bar{C} \right)^2 - C_\phi \frac{\mu_T}{\Delta^2} \bar{C}^n + 2 \bar{\rho} \omega_C \bar{C}'' \),

Enthalpy Variance: \(\bar{\rho} \bar{u} \partial_t \bar{h}^n = \frac{1}{r} \partial_r \left(r x_T \partial_r \bar{h}^n \right) + 2 x_T \left(\partial_r \bar{h} \right)^2 - C_\phi \frac{\mu_T}{\Delta^2} \bar{h}^n \),
Results: Mixture/Temperature Inhomogeneities

Experimentally observed stochastic ignition suggests sensitivity to initial conditions

- Mixture composition
- Temperature
 - Unsteady heating
 - Wall-heat losses
 - Temp-difference btw. fuel and oxidizer

Consider inhomogeneities

- Equivalence ratio: sample from experimentally determined beta-distribution
- Temperature fluctuations: Sample from Gaussian with specified T’

Use fully-developed turbulent pipe-flow at Re = 104
Parametric Analysis

Temperature effects

(a) \(T_0 = 1050K \)

(b) \(T_0 = 950K \)

(c) \(T_0 = 850K \)

(d) \(T_0 = 750K \)
Results: Mixture/Temperature Inhomogeneities

Mixture variation: $\phi=0.4; \phi'=0.135$
Temperature variation: $T=850 \, \text{K}; \ T' = \{0, 25, 50, 75\} \, \text{K}$
Results: Mixture/Temperature Inhomogeneities

Mixture variation: $\phi = 0.4; \phi' = 0.135$

Temperature variation: $T = 850$ K; $T' = \{0, 25, 50, 75\}$ K
Results: Effect of Mean Temperature Variation

Instantaneous particle field

![Graph showing the effect of mean temperature variation on ignition delay time. The x-axis represents $10^4/T [1/K]$, and the y-axis represents Ignition Delay Time, $\tau_{ig} [\mu s]$. Curves are labeled for different temperatures: $T' = 0K$, $T' = 25K$, $T' = 50K$, $T' = 75K$, and $T' = 100K$.](image-url)
Results: Time-scale analysis

- Ignition delay of homogeneous reactor
 \[\tau_{HR} = \arg\min_t (T_{HR}(t) \geq T_{ig}) \]

- Characteristic diffusion time scale
 \[\tau_{diff} \propto \delta^2 / \nu_T \]

- Consumption rate
 \[\tau_{cons} \propto R/s_T \]

- Turbulent burning speed is evaluated from thin-reaction zones regime/corrugated flamelet regime
 \[\frac{s_T^{TRZ}}{s_L} \approx \left(\frac{\alpha \nu_T}{\alpha} \right)^{1/2} \]
 \[\frac{s_T^{CFR}}{s_L} \approx 1 + \left(\frac{u'}{s_L} \right)^{1/2} \]
Results: Time-scale analysis

Time-scale analysis

\[\tau_{\text{ig}} \] \[\mu s \]

\[T' = 0K \]
\[T' = 25K \]
\[T' = 50K \]
\[T' = 75K \]
\[T' = 100K \]

Turbulent premixed flame regime

Stanford University
Flow Reactor
Summary and Conclusions

Main findings

- Velocity field has negligible effect on ignition time
- Rapid mixing minimizes effects of local equivalence fluctuations
- Temperature inhomogeneities have leading order effect on ignition delay
- Ignition initiated from hot particles in region of low mixing intensity
- Time-scale analysis suggests competition between \textit{volumetric} and \textit{deflagrative} ignition modes

Recommendations

- Spatio-temperature measurements of temperature field after injector
- Consider presence of \textit{deflagration-combustion} transition at low-temperature conditions

Guibert et al., FTC, 84:79-95, 2010.
Overview

Research objectives

Computational research effort

- Characterization of facility effects in flow reactors
- LES modeling of dual-swirl gas-turbine model combustor

Conclusions
Experimental Setup

Gas-turbine model combustor by Meier et al.1,2

- Aero-derived dual-swirl combustor
- Optical access for non-intrusive diagnostics \rightarrow comprehensive experimental database
- Common air-supply through plenum
- Fuel injection between inner and outer swirlers

Experimental Setup

Gas-turbine model combustor by Meier et al.1,2
- Aero-derived dual-swirl combustor
- Optical access for non-intrusive diagnostics \rightarrow comprehensive experimental database
- Common air-supply through plenum
- Fuel injection between inner and outer swirlers

Operating Conditions
- Consider stable operating point “flame A”
- Power: 35kW, Air: 18 g/s, Methane: 0.7 g/s

Flow field features
- Inner recirculation zone (IRZ)
- Outer recirculation zone (ORZ)

Flame Structure in Experiment

Comprehensive experimental investigations

- General characteristics of flame structure\(^1,2\)
 - Evidence of local flame extinction
- Flame dynamic and stabilization
 - PVC and flame interaction\(^3,4\)
 - Flame kernel analysis\(^5\)
 - Auto-ignition is not dominant
 - Flame regime analysis\(^6\)
 - Fuel is mostly aligned with oxidizer

Methodology
Computational Setup

Numerical scheme
- Fully unstructured LES-solver
- Spatial discretization: Low dissipation scheme
- Temporal discretization
 - Predictor-corrector
 - Pressure-Poisson solver in both stages

Sub-grid Scale Models
- Standard Smagorinsky model
- Dynamic Smagorinsky model (DSM)
- Vreman
- WALE

Mesh
- Refined block-structured mesh: 18m CVs
- Element breakdown
 - Plenum: 2 million
 - Swirlers: 9 million
 - Combustion chamber: 7 million
Computational Setup

COMPREHENSIVE PARAMETRIC ANALYSIS FOR NON-REACTING AND REACTING CONDITIONS\(^1,\text{2,3}\)

- Mesh resolution and mesh topology
- Subgrid-scale models

<table>
<thead>
<tr>
<th>Number of Elements</th>
<th>Mesh Type</th>
<th>Subgrid Scale Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 million</td>
<td>Hex+Tet</td>
<td>Vreman</td>
</tr>
<tr>
<td>7 million</td>
<td>Hex+Tet</td>
<td>DSM</td>
</tr>
<tr>
<td>20 million</td>
<td>Hex+Tet</td>
<td>Vreman</td>
</tr>
<tr>
<td>8 million</td>
<td>Hex</td>
<td>Vreman</td>
</tr>
<tr>
<td>18 million</td>
<td>Hex</td>
<td>Vreman</td>
</tr>
<tr>
<td>18 million</td>
<td>Hex</td>
<td>Smagorinsky</td>
</tr>
<tr>
<td>40 million</td>
<td>Hex</td>
<td>Vreman</td>
</tr>
</tbody>
</table>

Mesh Sensitivity

Conduction systematic mesh-refinement studies

- Considered mesh-refinement cases with different mesh-characteristics

Hex (8m) Hex (16m) Hex (40m) Hex/Tet (40m)
Mesh Quality

Assess mesh-resolution using Pope Criterion

\[M = \frac{k_{\text{res}}}{k_{\text{res}} + k_{\text{rslvd}}} \]

Combustion Models

<table>
<thead>
<tr>
<th>Models</th>
<th>Flamelet Progress Variable (FPV)(^1)</th>
<th>FPV with Progress Variable (FPV-Cvar)(^2)</th>
<th>Filtered Tabulated Chemistry for LES (F-TACLES)(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flamelet regime</td>
<td>Non-premixed</td>
<td>Non-premixed</td>
<td>Premixed</td>
</tr>
<tr>
<td>Tab. variables</td>
<td>(\tilde{Z}, \tilde{Z}''', \tilde{C})</td>
<td>(\tilde{Z}, \tilde{Z}''', \tilde{C}, \tilde{C}'''')</td>
<td>(\tilde{Z}, \tilde{Z}''', \tilde{C})</td>
</tr>
<tr>
<td>Z model</td>
<td>Beta PDF</td>
<td>Beta PDF</td>
<td>Beta PDF</td>
</tr>
<tr>
<td>C model</td>
<td>Dirac PDF</td>
<td>Beta PDF</td>
<td>Pre-filtering and efficiency function(^4)</td>
</tr>
</tbody>
</table>

Chemistry library generation

- GRI-2.11 detailed chemistry kinetics
- Unity Lewis number is assumed for flamelet calculations
- Progress variable, \(C = Y_{H2O} + Y_{H2} + Y_{CO2} + Y_{CO}\)
- Adiabatic combustion models

2. Ihme, Cha, and Pitsch, PCI, 30 (2005)
Significance of Wall Heat-loss Effects

Estimate wall-heat loss from mean-temperature at Farthest down-stream measurement location (h = 90mm) and comparison with equilibrium calculation.
Prior Model Evaluation
Prior Model Examination

EXPERIMENTAL RAMAN SINGLE SHOT MEASUREMENTS \(\Phi_{\exp} \)

- Mixture fraction, \(Z_{\exp} \) computed following Bilger’s definition\(^1\)
- Progress variable, \(C_{\exp} = Y_{H2O} + Y_{H2} + Y_{CO2} + Y_{CO} \)
- Direct evaluation of thermo-chemical variables from flamelet manifold using \((Z_{\exp}, C_{\exp})\) from measurements
 - Unfiltered flamelets and assume zero variance of \(Z,C \)
 - \(\Phi_{FPV/FPI} = F_{FPV/FPI} (Z_{\exp}, C_{\exp}) \)

\(\Phi_{\exp}, \Phi_{FPV} \text{ AND } \Phi_{FPI} \text{ ARE CONDITIONED ON MIXTURE FRACTION SPACE FOR EACH MEASUREMENT STATION}

SIMILAR METHODOLOGY WAS USED TO EVALUATE THE FEASIBILITY OF FLAMELET MODELS\(^1,2,3\)

1. Bilger et al., Combust. Flame (1990)
2. Sutherland et al., Combust. Theory Modeling (2007)
Prior Model Examination

- Flamelet manifolds provide good representation of temperature and major species
- Discrepancies for CO and H2
Simulation Results
Unstable Combustion Processes
Flow Field Results
Simulation Results: Mean Flow Field

Flow-field structure
- General mean flow-field structure
- Y-shaped internal recirculation zone
- Corner vortices
- Opening angle of the injector stream is well captured
- Elongated inner recirculation zone

Comparison with PIV measurements\(^1\) are in good agreement

Simulation Results: Mean and RMS Velocities (h=5mm)
Simulation Results: Mean and RMS Velocities (h=30mm)
Simulation Results: Temperature and Species (h=5mm)

- Experiment
- FPV
- FPV-Cvar
- F-TACLES

Stanford University
Simulation Results: Temperature and Species (h=15mm)
Simulation Results: Temperature and Species (h=30mm)

Experiment ----
FPV ----
FPV-Cvar ----
F-TACLES

Stanford University
Simulation Results: Temperature and Species (h=90mm)

Experiment

FPV

FPV-Cvar

F-TACLES

Stanford University
Transient Combustion Dynamics
Transient Combustion Dynamics

Spatially averaged vorticity

Solution number

V-Flame

Flat-Flame

Double IRZ

Flow-through Time

Stanford University
Transient Combustion Dynamics

Simulation results predict presence of flame switching mode.
Transient Combustion Dynamics

\[h = 5\text{mm} \quad h = 10\text{mm} \quad h = 20\text{mm} \quad h = 60\text{mm} \quad h = 90\text{mm} \]

\[\bar{u} \quad \bar{v} \quad \bar{w} \]

- EXP
- V Flame
- Flat Flame

Stanford University
Transient Combustion Dynamics

Wolfgang Meier (DLR): “The bifurcation of the flame behavior has often been observed by us. It is a quite difficult matter, because the reproducibility of such operating points is subject to many influences. Slight changes in temperature, pressure, flow meters etc. can lead to different results at different days.”

Flame shapes (OH chemiluminescence)
Wolfgang Meier (DLR): “The bifurcation of the flame behavior has often been observed by us. It is a quite difficult matter, because the reproducibility of such operating points is subject to many influences. Slight changes in temperature, pressure, flow meters etc. can lead to different results at different days.”
Conclusions

Performance evaluation of different topology-based flamelet models in GTMC

- Velocities are insensitive to combustion models
- Similar predictions for major species for both models
- All simulation results shows an elongated IRZ

Main Observations from LES computations of GTMC

- Simulation results exhibit dependence on
 - Mesh resolution and mesh type
 - Subgrid closure
 - Wall-resolution in swirler
- Global modification of flame topology and dependence on flow field require more investigation
Overview

Research objectives
Computational research effort
 ▪ Characterization of facility effects in flow reactors
 ▪ LES modeling of dual-swirl gas-turbine model combustor

Summary and Conclusions
Summary and Conclusions

Modeling and analysis of dual-swirl gas-turbine model combustor

- Prior model evaluation showed that premixed and diffusion-based combustion models provide comparable representation of flame-structure in absence of turbulence/chemistry interaction
- Flame-shape and major-species profiles are well captured with FPV and F-TACLES; FPV provides better prediction of minor species profiles (H2, CO)
- In agreement with experimental observation, LES captures bifurcation dynamics (sensitivity to SGS-closure, mesh-resolution, and boundary conditions)

Publications

Summary and Conclusions

Analysis of facility effects in flow reactors

- Developed Eulerian parabolized model to describe ignition and combustion dynamics in flow reactors
- Performed comprehensive analysis of facility specific sensitivities: velocity field, temperature, species
- Scaling analysis revealed presence of relevant time-scales associated with
 - Diffusion
 - Homogeneous ignition
 - Deflagration in thin-reaction zones regime and in corrugated reaction zones regime
- Recommendation:
 - **Measurements** of temperature field after injector
 - Consider competition of HR-ignition and deflagration at low-temp. conditions

Publications