

Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

Principal Investigators: Brian Gleeson, Frederick S. Pettit and Gerald H. Meier

Graduate Student: Nate Bohna Postdoc: Thomas Gheno

DOE PROGRAM: DE-FOA-0000459

Seth Lawson, Program Manager, DOE/NETL

Project Awarded 10/01/2011 (36 months duration)

Integrated Gasification Combined Cycle

IGCC Process

Thermal Barrier Coatings used in **hottest sections** of turbines

TBCs subjected to **deposits** and multioxidant **gas environments**

 $O_2 + CO_2 + H_2O + SO_2 \dots$

Sources of Deposits:

- Ambient air passing through turbine
- Upstream components
- Fuel source (coal)

Comparison of Typical Deposits

- Engine deposits in combustion turbines contain oxides similar to CMAS
- Variability due to location and fuel source (coal, syngas, ng)
- Coal and IGCC ash also contain sulfates that will be liquid

Typical IGCC Fly-Ash

	SiO ₂	Al ₂ O ₃	CaO	Fe ₂ O ₃	MgO	MnO	P ₂ O ₅	TiO ₂	K ₂ 0	Na ₂ O	SO ₃	С
Wt%	56	19	3.2	5	0.7	0.04	0.7	0.6	4.1	0.6	3.3	2.8

Levi, Hutchinson, Vidal-Sétif, Johnson, MRS BULLETIN, 37 (2012).

Example of Commercial Fly Ash

Class C Fly ash

From Boral Material Technologies Source: Plant Scherer, GA (pulverized coal)

Composition (wt. %)

As reported:

SiO ₂	26.4	SiO ₂	26.4
Al_2O_3	20.0	Al_2O_3	20.1
Fe_2O_3	6.1	Fe ₂ O ₃	6.1
CaO	33.4	CaO	33.4
MgO	8.0	MgO	8.0
SO ₃	3.4	Na ₂ SO ₄	5.2
Na ₂ O	2.3	 K ₂ SO ₄	0.7
K ₂ O	0.4		

Reactions of Fly Ash with YSZ

YSZ isothermal exposure to "class C" ash in dry air.

	1300 °C, 100h	- Ash	Composition	(wt. %)
" T "	20 µm	Melted ash has severely degraded the YSZ	SiO_2 Al_2O_3 Fe_2O_3	26 20 6
1 m	1200 °С, 24h 	— Ash — Complex Reaction Layer	CaO MgO Na ₂ SO ₄ K ₂ SO ₄	33 8 5 1
	1100 °С, 100h	5 μm	Some infiltra ash constitu partial melti	ation of ents, ng

- Determine the effects of fly-ash deposits at temperatures below ash liquidus.
- Systematically assess the interplay between prototypical deposit chemistries (*i.e.*, ash oxide and sulfate constituents) and environmental oxidants (*i.e.*, O₂, H₂O and CO₂) on the high-temperature degradation behavior of advanced TBC systems.
- Determine the combined effects of deposit-induced attack at relatively low temperatures on TBC performance.
- Establish reliable test procedures for assessing deposit-induced degradation of TBCs in different gas atmospheres.

Two TBC Systems Studied

Provided by **Praxair Surface Technologies**, a collaborator on this project

<u>Substrate</u>: 2^{nd} generation Ni-base single crystal superalloy (René N5 or PWA 1484) <u>Bond Coat</u>: NiCoCrAlY (Ni-22Co-16Cr-13Al-0.5Y wt.%) applied by Ar-shrouded plasma spraying at PST <u>TBC</u>: Standard YSZ composition – 7wt.%Y₂O₃ – deposited by APS at thickness of ~380 μ m

Experimental Setup

Thermal Cycling Experimental Setup

<u>Isothermal Testing at 1100°C</u>: *Free-standing YSZ*

- Reactions between YSZ/deposit
- Phase transformation in YSZ

Cyclic Testing between 1100°C/160°C: DVF and HPLD TBCs

- Early failure from fly-ash
- Atmospheric Effects

Gas Atmospheres:

- Dry Air
- Air+steam

Testing of 7YSZ top coat

High-CaO Ash

- Reaction with YSZ
- Additions of sulfate
- Cyclic failure of TBCs High SiO₂-Ash

YSZ Reaction with Synthetic Ash

Dry Air exposures at 1100°C, 72h

Consequences of CaZrO₃

Thermal Cycling in lab air with CaZrO₃ layer

200 Cycles: 45min hold at 1100°C, 10min cool to 45°C

Cycling without reaction layer

Cycling after pre-formed $CaZrO_3$

- TBC reacted with CaO isothermally for 72h, then tested in cyclic furnace
- Very little spallation of CaZrO₃ layer at YSZ surface
- No significant overall affect on TBC performance

Testing of 7YSZ top coat

High-CaO Ash

- Reaction with YSZ
- Additions of sulfate
- Cyclic failure of TBCs High SiO₂-Ash

Synthetic Ash with/without Addition

- Found that it is mainly CaO from fly-ash that reacts directly with YSZ
- Fly ash typically contains **sulfates**

Reactions in dry air at 1100°C, 72h

Addition of K₂SO₄ to synthetic ash causes infiltration of Ca into YSZ

Synthetic Ash + K₂SO₄ Addition

Free-standing DVC YSZ, reacted for 72h, 1100°C in dry air

Ash Composition

	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	K ₂ SO ₄
Wt%	63	16.2	8.1	1.8	0.9	10

Consequence of Infiltration

Thermal Cycling in Lab Air 140 Cycles: 45min hold at 1100°C, 10min cool to 45°C

High-CaO Deposit without K₂SO₄

High-CaO Deposit with K₂SO₄

Early failure of DVC TBC caused by infiltration of top coat

Reaction with CaO+K₂SO₄

Free-standing DVC YSZ reacted with CaO+50wt%K₂SO₄, 1100°C, in dry air

- Short times: CaO and K₂SO₄ both infiltrate
- Longer times: Loss of K₂SO₄, CaO reacts with YSZ

1h

Reaction with CaO+K₂SO₄

70h Dry Air Exposures at 1100°C

0.1CaO-0.90K₂SO₄

0.5CaO-0.5K₂SO₄

- Very low solubility of CaO in liquid K₂SO₄
- Increased CaO in deposit correlates with increased CaZrO₃ penetration
- Suggests CaO carried in suspension with liquid K₂SO₄

Testing of 7YSZ top coat

High-CaO Ash

- Reaction with YSZ
- Additions of sulfate
- Cyclic failure of TBCs High SiO₂-Ash

TBC Failure after Cyclic Exposure

How does infiltration of CaZrO₃ affect **TBC performance**? Thermal Cycling in dry air: 45min at 1100°C/ 15min at 160°C

"High-CaO" Ash+.05K₂SO₄+.05FeS

DVC TBC Failure <u>with</u> deposit

DVC TBC Failure <u>without</u> deposit

	<u>Wt%</u>
CaO	63
SiO ₂	16.2
Al_2O_3	8.1
Fe_2O_3	1.8
MgO	.9
K_2SO_4	5
FeS	5

TBC Failure after Cyclic Exposure

Stress in TBC from CTE mismatch

$$\sigma_o = E_{tbc} \frac{\Delta \alpha \Delta T}{1 - \upsilon}$$

Key parameters affecting stress in top coat: E, α , ΔT

<u>Typical Values</u>

	E (Gpa)	α (x10 ⁻⁶ C ⁻¹ ppm)
YSZ	30-50	11-13
Metal	200	17.1

Free-standing YSZ heat treated 72h: 3-Pt Bend Test

Significant increase in elastic modulus Contributes to overall increased stress

Choi; Hutchinson; Evans, Mechanics of Materials 31 (1999), 431-447.

TBC Failure after Cyclic Exposure

TBC Degradation in HPLD Top Coat Thermal Cycling in dry air: 45min at 1100°C/ 15min at 160°C

Failure Without Deposit

Failure With Deposit

Testing of 7YSZ top coat

High-CaO Ash

- Reaction with YSZ
- Additions of sulfate
- Cyclic failure of TBCs
 High SiO₂-Ash

High-SiO₂ Ash Exposed to YSZ

	Ash+.1K ₂ SO ₄	
Effects of lower-CaO ash that should not form CaZrO ₃ ?		<u>Wt%</u>
Infiltrated cracks at YSZ surface contain ash constituents	SiO ₂	45
	Al_2O_3	22.5
Some liquid infiltration likely	CaO	9
	Fe_2O_3	9
	MgO	4.5
	K_2SO_4	10

Synthetic

72h Exposure in Dry Air, 1100°C

۲

Cyclic TBC Exposure to High-SiO₂ Ash

Early Failure of HPLD TBCs with "high-SiO₂" ash with K₂SO₄ Thermal Cycling in dry air: 45min at 1100°C/15min at 160°C

Failure of HPLD TBCs From High-SiO₂ Ash in Dry Air

Test Conditions

24

Summary of Top Coat Results

- Infiltration into YSZ when K₂SO₄ is present
- TBC degradation at temperatures below overall ash melting temperature
- Different modes of failure for DVC and HPLD top coats

MCrAlY Bondcoats – Background

Bondcoats: corrosion-resistant metallic coatings

in Clarke et al, MRS Bulletin 37 (2012)

Overlay: MCrAlY (M=Ni,Co)

- Two-phase β-γ structure
- Commonly used in land-based turbines for power generation

MCrAlY Bondcoats – Background

Identified modes of degradation:

- air oxidation; thermal cycling
- sulfate-induced accelerated attack: type I and type II hot corrosion

Fly ash-induced corrosion ?

Fly Ash Corrosion

Fly ash oxide-sulfate mixtures found to cause degradation of NiCoCrAlY alloys at intermediate temperatures (900-1100 °C)

Ni-30Co-30Cr-12Al-0.1Y, 50 h at 1100 °C CO₂-20H₂O

Class C ash (wt. %)

SiO ₂	26
Al_2O_3	20
CaO	33
Fe_2O_3	6
MgO	8
Na ₂ SO ₄	5
K ₂ SO ₄	1

Factors Considered in the "Bondcoat" Study

Alloy

- phase compositions
- γ-β fractions
- Y content

Deposit

- sulfates
- oxides

Environment

- temperature
- gas (air vs CO₂-H₂O)
- p_{0_2}, p_{S0_3}

- 1. Experimental protocol
- 2. Reactivity of class C ash, effect of alloy composition
- 3. Reactivity of individual oxides: *CaO in this presentaion*
- 4. Interactions between oxide and sulfate constituents, and gas p_{SO_3} and temperature

Factors affecting fly-ash corrosion

Experimental Protocol

Experimental conditions:

- Cast NiCoCrAlY alloys used in place of thermally sprayed coatings
- 50 h exposures at 900 °C and 1100 °C

Deposits:

- Class C fly ash
- Individual oxides, sulfates
- Synthetic mixtures:

Acidic oxide	+	Basic oxide	+	Sulfate
Al_2O_3		CaO		Na ₂ SO ₄
SiO ₂		MgO		

Gas mixtures:

- dry air
- CO₂-20H₂O
- CO₂-20H₂O-1.6O₂
- 0_2 -0.1S 0_2

Mode of Reaction with Class C Ash

1100 °C Ni-30Co-27Cr-12Al-0.1Y

> Class C ash CO_2 -20% H_2O

> > 10 µm

Extent of degradation decreases with increasing β fraction.

Effect of Y Content

Number and size of Y-Al oxide pegs very sensitive to Y content. Significant degradation of "overdoped" alloy in the presence of ash deposit. 33

Factors Considered in the Study

Alloy

- phase compositions
- γ-β fractions
- Y content

Deposit

- sulfates
- oxides

Environment

- temperature
- gas (air vs CO₂-H₂O)
- p_{0_2}, p_{S0_3}

- 1. Experimental protocol
- 2. Reactivity of class C ash, effect of alloy composition
- 3. Reactivity of individual oxides: CaO
- 4. Interactions between oxide and sulfate constituents, and gas p_{SO_3} and temperature

Factors affecting fly-ash corrosion

Exposure to Individual Oxides

Thermally grown Al_2O_3 reacts at a significant rate with CaO and MgO

Exposure to CaO in Dry Air

Transient stage: reaction rate much higher for low β fraction.

Steady-state: reaction rate similar for both alloys, higher than in the absence of CaO deposit.
Exposure to CaO in dry air

Reaction with CaO: two distinct processes

1100 °C, 50 h

Ni-30Co-33Cr-12Al-0.1Y (γ -18 β)

Reaction rate decreases when alloy passivates.

High β alloys

Ni-19Co-16Cr-23Al-0.1Y (γ-65β)

Steady-state reaction of CaO with TGO to form xCaO-yAl₂O₃ layers; minimal alloy consumption.

Exposure to CaO in Dry Air

Reaction CaO-Cr₂O₃ to form a liquid (*K.T. Chiang, G.H. Meier, R.A. Perkins, J. Materials for Energy Systems, 1984*)

Exposure to CaO in Dry Air

 \rightarrow as γ is consumed, Al is rejected until Al_2O_3 can form

Exposure to CaO in dry air

Transient attack extremely severe for $100 \% \gamma$ alloy

Ni-33Co-35Cr-7Al-0.1Y, 50 h at 1100 °C

In service conditions (thermal cycles), reaction product spallation will cause transient stage to be repeated.

Exposure to CaO in Dry Air

Ni-19Co-16Cr-23Al-0.1Y (γ-65β)

How does Al_2O_3 reaction to form xCaO-yAl₂O₃ affect Al consumption?

50 h, 1100 °C

Kinetics of Al_2O_3 formation-destruction

CaO deposit: enhanced Al consumption \rightarrow decreased lifetime

Example: 190 µm bondcoat Time for β depletion through half-thickness No deposit: 31,000 h CaO: 16,000 h *i.e.*, 48 % reduction

$$\begin{array}{c} 10 \\ 16 \\ 14 \\ 12 \\ 10 \\ 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \end{array} \right) \beta \text{ dissolution}$$
 No deposit No deposit
$$\begin{array}{c} \beta \text{ dissolution} \\ \beta \text{ dissolution} \\ Al_2O_3 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ t^{1/2} (h^{1/2}) \end{array} \right)$$

18

Factors Considered in the Study

Alloy

- phase compositions
- γ-β fractions
- Y content

Deposit

- sulfates
- oxides

Environment

- temperature
- gas (air vs CO₂-H₂O)
- p_{0_2}, p_{SO_3}

- 1. Experimental protocol
- 2. Reactivity of class C ash, effect of alloy composition
- 3. Reactivity of individual oxides: CaO
- 4. Interactions between oxide and sulfate constituents, and gas p_{SO_3} and temperature

Factors affecting fly-ash corrosion

Role of Ash Oxide and Sulfate Contents

Combination of sulfates and oxides is needed to cause alloy degradation.

Deposit reactivity at 1100 °C

1100 °C CO₂-20H₂O-1.6O₂ Ni-30Co-27Cr-12Al-0.1Y

Al₂O₃-30%CaO

Formation of xCaO-yAl₂O₃ layers

$Al_{2}O_{3}\text{--}30\%CaO\text{--}10\%SiO_{2}\text{--}10\%Na_{2}SO_{4}$

Breakaway and repassivation; similar to class C ash reaction

Acidification of Na_2SO_4 melt by SiO_2 probable cause of Al_2O_3 failure

Effect of p_{SO_3} at 1100 °C

Effect of p_{SO_3} at 1100 °C

Effect of Temperature on CaO Reactivity

 CO_2 -20H₂O-1.6O₂ Al₂O₃-CaO Ni-30Co-27Cr-12Al-0.1Y

 $C_x A_y$ layers + continuous Al_2O_3 \rightarrow alloy passivated 900 °C

Mixed oxides + Al_2O_3 protrusions \rightarrow no passivation

Kinetics of Al₂O₃–CaO Reaction

 $\frac{\mathrm{d}X}{\mathrm{d}t} = \frac{p}{2X} - \frac{1}{2X}$

Net growth rate of
$$Al_2O_3$$

 $\frac{dX}{dt} = \frac{p}{2X} - \alpha \frac{q}{2\sqrt{qt}} \longrightarrow \begin{bmatrix} X^2 = kt \\ k = \frac{1}{2} [2p + \alpha^2 q - \alpha \sqrt{q(4p + \alpha^2 q)}] \end{bmatrix}$
 p : parabolic constant for pure oxidation, from TGA with no deposit
 q : parabolic growth rate of C_xA_y , from thickness measurements
Minimum Al concentration to sustain Al_2O_3 growth (Wagner's analysis)

$$j_{Al}^{\text{alloy}} = \frac{N_{Al}^{0} - N_{Al}^{i}}{V_{\text{alloy}}} \sqrt{\frac{\widetilde{D}_{Al}^{\text{Ni}}}{\pi t}} \qquad \qquad j_{Al}^{\text{alloy}} = j_{Al}^{\text{oxide}} \qquad \qquad \frac{Al_{2}O_{3}}{NiCoCrAlY} \qquad \qquad \frac{j_{Al}^{\text{oxide}}}{NiCoCrAlY} \qquad \qquad \frac{j_{Al}^{\text{oxide}}}{NiCOC} \qquad \qquad \frac{j_{Al}^{\text{oxide}}}{NiCOC} \qquad \qquad \frac{j_{Al}^{\text{ox$$

Kinetics of Al₂O₃–CaO Reaction

Alloy composition: Ni-30Co-27Cr-12Al-0.1Y

(at. %)	1100 °C	900 °C (ext	900 °C (extrapolated)				
	α -Al ₂ O ₃	α -Al ₂ O ₃	θ -Al ₂ O ₃				
min $N_{\rm Al}^0$	1.4	0.3	11.1				
$N_{\rm Al}^0$ in γ	9.9	6.3					

graph adapted from H.J. Grabke, Intermetallics 7 (1999)

Deposit Reactivity at 900 °C

Al₂O₃-30%CaO

 $CaSO_4$ is more stable than all aluminates $\rightarrow Al_2O_3$ consumed via different reaction path (sulfate-induced but solid-state) Calcium sulfo-aluminate involved ?

Summary and Conclusions

- Reaction with CaO at 1100 °C
 - transient stage: formation of liquid Ca-Cr-O causes significant alloy degradation; extent of attack reduced with increasing β fraction;
 - steady-state: consumption of Al_2O_3 sustains high Al depletion rate.
- Reaction with oxide-sulfate mixtures at 1100 °C
 - presence of SiO₂ or SO₃ (g) favor formation of very stable CaSiO₃ or CaSO₄, which effectively neutralizes CaO;
 - mixtures associating Na_2SO_4 with high levels of SiO_2 and CaO (like class C fly ash) cause breakaway oxidation; extent of attack reduced with increasing β fraction.
- Reaction with oxide-sulfate mixtures at 900 °C
 - Both CaO (S-free gas) and CaSO₄ (S-containing gas) cause significant alloy degradation, although via different routes;
 - CaSO₄-induced attack resembles Na₂SO₄-induced attack (hot corrosion).

Summary and conclusions

- Different modes of degradation may involve conflicting alloy requirements; compromise is needed depending on application of interest;
- It is critical to fine tune the amount of reactive elements like Y.

Thank you for your attention

Additional slides (bondcoat work)

Effect of Y content

1100 °C, 50 h Ni-19Co-15Cr-24Al

0.3Y version

Yttrium-rich pegs are involved in severe alloy attack.

Situation similar to type II hot corrosion*.

*M. Task, PhD thesis, University of Pittsburgh (2012)

Corrosion testing

CaO deposit in lab air, 50h, 1100 °C

Corrosion testing

type I hot corrosion: Na₂SO₄, O₂-1000 ppm SO₂, 20 h 900 °C

Moving forward:

- Study of alloy and thermally grown Al₂O₃ reaction with sulfates; relation with type I hot corrosion.
- Use of computational thermodynamics to design alloys which allow systematic investigation of effect of phase fraction vs phase composition; application to various types of degradation. Examples included here: CaO corrosion at 1100 °C, Na₂SO₄ corrosion at 900 °C (type I hot corrosion)

Deposit Reactivity at 900 °C

900 °C O₂-0.1SO₂ Ni-30Co-27Cr-12Al-0.1Y

 Al_2O_3 -CaO

Al₂O₃-CaO-SiO₂-Na₂SO₄

Local Al₂O₃ failure due to reaction with CaSO₄ or Na₂SO₄

CMAS Failure

• Thermo-mechanical interactions

CMAS

Thermo-Chemical Effects

Dissolution of YSZ into CMAS melt

Re-precipitation of ZrO_2 with different microstructure and composition

YSZ+CMAS, 1300°C, 4h

YSZ+CMAS, 1300°C, 4h

Thermo-Mechanical Effects

Surface above melting point of CMAS

Cooling: delamination of TBC in infiltrated regions as a result of ΔE and ΔCTE

P. Mohan, T. Patterson, B. Yao, Y. Sohn, J. Thermal Spray Tech., 19(1-2) pp. 156-167, 2010

C. Mercer, S. Faulhaber, A. G. Evans and R. Darolia, Acta Materialia, vol. 53, pp. 1029-1039, 2005

Kinetics of Al₂O₃ formation-destruction

Alloy compositions

Appendix

Low magnification micrographs

16Al

Appendix

Phase volume fractions

Determined by image analysis from SEM micrographs (cross-section)

#	γ	β	σ
3	87	13	
4	84	16	
5	81	18	1.0
6	66	34	
7	59	40	1.6
8	36	42	22

Phase compositions

Determined by SEM-EDS at. %, balance = Ni

	γ			β			σ		
#	Со	Cr	Al	Со	Cr	Al	Со	Cr	Al
3	32	29	10	17	10	33			
4	32	33	8.5	18	11	32			
5	32	37	8.2	19	14	33	28	58	3.3
6	34	35	8.4	21	12	33			
7	35	37	7.8	22	14	32	30	57	3.3
8	37	37	7.6	23	14	32	31	57	3.3

Oxidation (no deposit)

All alloys form Al_2O_3 in all atmospheres

Oxidation (no deposit)

1100 °C, 50 h

Scale thickness (µm)

Weight gain (mg/cm²)

- Thinner Al_2O_3 scales in CO_2 - H_2O
- In air, less transient oxidation with higher β fraction

Oxidation (no deposit)

All alloys form Al_2O_3 in all atmospheres

(high Cr and Al contents, Al₂O₃ does not form volatile compound, good barrier to carbon)

Thinner scales in CO_2 -H₂O than in air.

Experimental protocol

Ni-30Co-30Cr-12Al-0.1Y 1100 °C, 50 h CO₂-H₂O

Class C ash (wt. %)						
SiO ₂	Al_2O_3	CaO	Fe ₂ O ₃	MgO	Na ₂ SO ₄	K ₂ SO ₄
26	20	33	6	8	5	1

Commercial ash

Synthetic mixture

Complex reaction morphology induced by reaction with commercial fly ash is reproduced using a synthetic mixture \rightarrow ability to test various deposit compositions

Exposure to C-ash in CO₂-H₂O

33Cr-12Al (γ-**18**β) Photo-stimulated luminescence spectroscopy ash α -Al₂O₃ Absence of θ doublet Al_2O_3 20 µm 685 690 695 700 Wavelength (nm)

Non-uniform degradation.

Locally thick reaction product, contains large amounts of alloy constituents.

Effect of gas composition

1100 °C Ni-30Co-27Cr-12Al-0.1Y

> Class C ash 1 h exposures

No particular effect of CO_2 , H_2O or low p_{O_2}

Nitridation due to N_2 in air

Absent a deposit, all alloys studied formed external Al_2O_3 scales in all atmospheres

CO₂-20H₂O (eq. *p*O₂ 40 ppm)

 CO_2 -20H₂O-1.6O₂

 $N_2 - 210_2$

Ni-19Co-16Cr-23Al-0.1Y (γ-65β)

Interaction deposited oxide-TGO with consumption of Al₂O₃, but no significant loss of alloy constituents.

from Phase diagrams for ceramists, vol. 1, Levin et al, eds (1964)

1100 °C, 50 h

t < 5 hthick top layer, α -Al₂O₃ established5 < t < 50 honly xCaO-yAl₂O₃ layers grow \rightarrow top layer formation is rapid, then stops (i.e., transient)

Ni-30Co-33Cr-12Al-0.1Y (γ-18β)

1100 °C

no preoxidation, 50 h CaO

Preoxidation prevents rapid transient attack

5h, 1100 °C

Ni-30Co-33Cr-12Al-0.1Y (γ-18β)

Ni-19Co-16Cr-23Al-0.1Y (γ-65β)

Large β fraction

 \rightarrow same mechanism occurs to a lower extent (alloy degradation is more rapidly undercut by Al₂O₃).

Ash-induced degradation: reaction mechanism

Case of dry air

Evolution of the reaction morphology with reaction time

1 h

50 h

250 h

Deposit reactivity at 1100 °C

Deposit reactivity at 900 °C

900 °C O₂-SO₂ Ni-30Co-27Cr-12Al-0.1Y

 Al_2O_3 -CaO

CaSO₄

Reaction product yet to be identified but significant amounts of Al and Cr have reacted with $CaSO_4$

Deposit reactivity at 900 °C

 $CaSO_4$ more stable than $CaSiO_3 \rightarrow$ neutralization not effective

TBCs Provided by PST

dSpecimen Group #	Substrate Alloy	Bond Coat Type	Bond Coat Thickness (mils)	TBC Powder	TBC Density (%T.D.)	TBC Thickness (mils)	Quantity
1 a	René N5	Dual Layer NiCoCrAlY	7-8	High Purity YSZ	85	15	10
1b	PWA 1484	Dual Layer NiCoCrAlY	7-8	High Purity YSZ	85	15	13
2a	René N5	Dual Layer NiCoCrAlY	7-8	High Purity YSZ	92	15	10
2b	PWA 1484	Dual Layer NiCoCrAlY	7-8	High Purity YSZ	92	15	13

Nominal Composition of Materials (wt%)													
Layer	Material	Ni	Co	Cr	Al	W	Mo	Ta	С	В	Re	Y	Hf
Superalloy	René N5+	Bal	7.5	7	6.2	5	1.5	6.5	0.05	0.004	3	0.01	0.15
	PWA-1484	Bal	10	5	5.6	б	2	8.7			3		0.1
Bond Coat	NiCoCrAlY	Ni	Co	Cr	Al	Y							
		Base	22	16	13	0.5							
Topcoat	YSZ	ZrO ₂	Y ₂ O ₃	Al_2O_3	CaO	Fe ₂ O ₃	HfO ₂	MgO	Si O ₂	All Other			
		Base	7.736	0. 011	0.003	0.007	1.69	<0.001	0.013	0.157			

Thermal Barrier Coatings (TBCs)

Multi-Layered TBC System

Thermal Barrier Coatings (TBCs)

Yttria Stabilized Zirconia (YSZ) Top Coat

- ZrO₂: low thermal conductivity
- High resistance to thermal cycling
- \sim 7wt% Y₂O₃: t' phase

Clarke, Oechsner, Padture, MRS Bulletin, 37 (2012)

Cyclic TBC Exposure to High-SiO₂ Ash

- Failure determined by complete delamination of top coat
- Significant damage to YSZ before complete failure

CaO Dependence on Reaction

Comparison of failure: High-CaO Ash+5%FeS+5%K₂SO₄

HPLD Top Coat Failure

DVF Top Coat Failure

200 µm

Location of TBC spallation is different.

TBC Failure After Cyclic Exposure

TBC Failure after 444 Cycles at 1100°C Synthetic Ash (70%CaO) + 5%FeS + 5%K₂SO₄

YSZ -

200 um

20 µm

Bond

Coat

TGO

Mixed Ni-Co-Cr-Al-Y Oxides

Similar failure, but ash causes failure to occur **early**.

Cyclic Exposure to High-SiO₂ Ash

<u>HPLD TBC high-SiO₂ Ash + 0.10K₂SO₄ Dry Air</u>

260 Cycles: Re-apply every 20 cycles

<u>HPLD TBC high-SiO₂ Ash + 0.10K₂SO₄ Air+20%H₂O</u>

200 µm

Reactions of Fly Ash with YSZ

Free-standing YSZ isothermal exposure to C-Ash in dry air 1300°C.

Destabilization of t' phase from liquid fly-ash interaction with YSZ.

Raman spectra used to identify change from t' phase

Hamilton; Nagelberg, Journal of the American Ceramic Society, 67[10], pp. 686-690 (1984).

Temperature Dependence of Reaction

Different ratios of oxides can result in different melting point.

Class C Ash 1200 °C, 24h in Dry Air

Melted ash penetrated into YSZ

Adapted from Eriksson, et al, Metallurgical Transactions B, 24B (1993) 807-816.