Sensor fabrication:

- Different geometries were achieved
- Cracked surfaces observed on certain samples
- Silver painting of the commercial sample

Testing results:

- Hall effect sensor demonstration
- Signal interference testing
- Pyroelectric ceramic testing

Conclusion:

- The first stage of the sensor fabrication was carried over successfully
- The Hall effect sensor concept was demonstrated using a thermoelectric sensor
- Voltage change in the Hall effect sensor can be used for temperature sensing
- Signal loss was found when using steel alloys

Future Work

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 1</td>
<td>Task 1.1: Materials determination</td>
<td>Task 1.2: Sensor Fabrication</td>
<td>Task 1.3: Material Evaluation</td>
</tr>
<tr>
<td>Task 2.1: System Development</td>
<td>Task 2.2: Sensor Calibration</td>
<td>Task 2.3: Performance Evaluation</td>
<td></td>
</tr>
</tbody>
</table>

Student Involvement

<table>
<thead>
<tr>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
</tr>
</thead>
</table>

Acknowledgements

This research was performed with the support of the U.S. Department of Energy advanced fossil resource utilization research under the HBCU/MI program with grant number of FE001123.

References