

Investigation on Pyroelectric Ceramic Temperature Sensors for **Energy System Applications**

Sarker, R.,¹ Karim, H.,¹ Sandoval, S.,¹ Love, N.,¹ Lin, Y.^{1,†} ¹ Department of Mechanical Engineering, The University of Texas at El Paso

Introduction

Objective:

 To design, fabricate, and test wireless temperature sensors using the principle of pyroelectricity¹

Methodology & Materials

Rationale:

Figure 3: (A) Principle of the proposed sensor, (B) Schematic and working mechanism of the sensor components

Sensor fabrication:

Materials:

- Pyroelectric ceramic: Lithium niobate (LiNbO₃)
- Binder: Polyvinyl alcohol (PVA)

Process:

- Ceramic compressed at 3 metric tons
- Cured at 150°C for 120 minutes

Testing:

Tests performed:

- Hall effect sensor demonstration
- Signal interference testing
- Pyroelectric ceramic testing

nanopowders

Results

Sensor fabrication:

- Different geometries were achieved
- Cracked surfaces observed on certain samples
- Silver painting of the commercial

Testing results:

Conclusion

- The first stage of the sensor fabrication was carried over successfully
- The Hall effect sensor concept was demonstrated using a thermoelectric sensor
- Voltage change in the Hall effect sensor can be used for temperature sensing
- Signal loss was found when using steel alloys

Future Work

Student Involvement

Acknowledgements

This research was performed with the support of the U.S. Department of Energy advanced fossil resource utilization research under the HBCU/MI program with grant number of FE0011235

References

Whatmore, R.W., "Pyroelectric Devices and Materials", Reports on Progress in Physics, 1986, 49(12): P. 1335