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Outline of this talk

 Motivation of this project

e Efforts in FY13-FY14

1. Optimization of heat treatments §
2. New alloy development

e Milestone status in FY13/FY14
e Summary / Future Work

CSEF Steel Header Fabrication, Courtesy Prof. Masuyama
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Why “Improvement” of CSEF required?

 Majority of structural components for
High-Efficiency Boilers (T23, T/P91, T/P92)

 Life of weldments shorter than Base Metal

— Type IV failure shortens the material life,
caused by weakened microstructure at
the heat affected zone (HAZ)

N Type IV failure
(at fine grained HAZ)

@ | Source: ETD Ltd.
Creep-rupture lives of P91 Base/Weldments

 Type IV failure of traditional F-M steel ‘
weldments is unavoidable

— To minimize: Optimization of heat treatment :
— To eliminate: New alloy development

’ Open symbol: Base
Solid symbol: Welded joint _
T T 0 10 T T
Time to rupture(h)

Source: Yaguchi et al., ASME 2012 PVP

* OAK RIDGE NATIONAL LABORATORY
3 Improving the Performance of Creep-Strength-Enhanced Ferritic (CSEF) Steels, Yamamoto et al. MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



Type IV failures depend on gradients of
microstructures/properties in weld HAZs

9Cr-1Mo calculated phase diagram y-Fe (austenite)
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ASME Standard HT (SA213, SA335, SA387):

Normalization = 1040-1080°C, Tempering = 730-800°C
Post weld heat treatment (PWHT) = 730-775°C

(after tempering)
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Minimize/Eliminate Type 1V failure In
CSEF steel weldments

1. Optimization of heat-treatment: Grade 91 steel
— Target existing CSEF steels (feasible, inexpensive)

— Based on cumulative efforts of scientific understanding +
breakthrough concepts

2. New alloy development: High Cr ferritic steel
— Target new ferritic alloys (essentially free from Type IV failure)

— Theoretically no upper temperature limit due to no transformation
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Achievement in “Optimization of HT”

FY13:

 Non-standard heat treatment (lower temperature pre-weld tempering) improved cross-
weld properties after PWHT compared to standard heat-treated specimens.

» Non-standard heat treated base metal showed poor RT toughness, which could be due
to supersaturated carbon in the “half-tempered” matrix.

Cross-weld creep test results

Ref ORNL TM-10504 report (1987)
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Charpy impact test results (base metal)
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Y. Yamamoto et al., Proc. 7 Intl. conf. Adv. Mater. Tech. for Fossil Power Plants, 2014
, Proc. ASME Symp. Elev.Temp. Appl. of Mater. for Fossil, Nuclear, and Petrochemical Industries, 2014
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Non-standard heat treatment improved
creep-resistance at FGHAZ

Creep-rupture curves of cross-weld Gr 91 In-situ creep strain measurement™”
5
650°C/70MPa Standayd
Non-std. HT : '
© 4 (tempered at 650°C)
g 3 1 Standard HT HAZ\\ We[d
;% (tempered at 760°C) %
5
0 560 10I00 15IOO 20IOO 25I00
Time, h
 Improved cross-weld creep resistance  Creep deformation concentrated at HAZ

*measured by digital image correlation technique
**tested at 650C/70MPa for 90h

X. Yu etal., Proc. 7 Intl. conf. Adv. Mater. Tech. for Fossil Power Plants, 2014
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Low temperature pre-weld tempering led complete
dissolution/ re-precipitation of M,;C, after PWHT

Table: Microstructure evolution at fine grain heat affected zone

Pre-weld temper Weld (at FGHAZ) PWHT

Standard HT

(tempered at
760°C)

Non-std. HT

(tempered at
650°C)

(during welding) s (after cooling)

@®: \,.C, o: MX

» Dispersion of fine strengthening carbides (M,,C;) at FGHAZ is the key
to improve creep properties

X. Yu et al., Acta Materialia, vol. 61 (2013) p. 2194-2206.
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Achievement in “Optimization of HT” (cont.)
FY14.

 Applied aus-forging and aus-aging (thermo-mechanical treatment or TMT*) to promote
stable MX formation prior to welding which successfully improved cross-weld creep
properties with sufficient RT toughness of the base metal

9Cr-1Mo calculated phase diagram TMT process
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*Ron Klueh et al., Scripta Materialia (2005), J. Nuclear Materials (2007)
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Expected microstructure evolution of
TMT 9Cr steel before/after weldment

Table: Microstructure evolution at fine grain heat affected zone

As normalized Pre-weld
or As TMT temper Weld (at FGHAZ) PWHT
Non-std.
HT
(at 650C)
TMT s < . L
+ std. temper S ey
( 7 7
(at 760C) (during welding)==»  (after cooling)

o MX @: M,C,
o MXat FGHAZ is stable and insensitive to heating/cooling process during welding
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Expected microstructure obtained
above 8OOC SEM-BSE, as (*7aus-rgd)
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o TMT at 800 and 900°C resulted in formation of
the martensitic microstructure

(Ferrite)
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Expected microstructure obtained
above 800C STEM-HAADF images

(carbon extraction replica

)
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o TMT at 800 and 900°C resulted in formation of
the martensitic microstructure
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Dense MX increased Hv even at FGHAZ

Hardness map
TMT9 + 760°C/2h(temper) + GTAW + 760°C/2h(PWHT)
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» Whole area showed higher Hv, even at FGHAZ
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Improved properties in TMT8+T

Creep-rupture curves (Cross-weld) Charpy impact test results (Base metal)
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Characterization efforts in progress

Analyzed microstructure factors* (unit: ym)

TMT800 As-normalized
Prior-austenite grain size 29 40

Martensite block width 5.0 4.6

*obtained from the images shown in this slide.

« No significant difference in prior

austenite grain size / martensite
block width

» Need detailed characterization of
MX (size, distribution, etc.)

Body Centered Cubic
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Achievement in “New Alloy Development”

* Collaboration with Forschungszentrum Julich GmbH, Germany were
Initiated in FY13

* Objective: Develop alloy compositions (parent and weld filler metals)
optimized for the weldments of a new high-Cr ferritic steel strengthened
by intermetallic phases, “HiperFer” (based on Crofer 22H®)

— Led by Dr. Bernd Kuhn, Forschungszentrum Julich (FZJ), Germany with ORNL support

— ldentify and qualify suitable welding processes, and evaluate the properties of both the base /
cross-weld specimens.

» FZJ student worked at ORNL in a collaborative effort.
— Initiated microstructure characterization of trial e-beam weld HiperFer steels.

Table: Target composition ranges
Fe | Cr W Nb Si [Mn| C N

wt% |Bal.|17-23| 1-7 |0.3-1{<0.25|<0.5|<0.01|<0.015
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Optimization of pre-/post- e-beam weld
heat-treatment In progress

Hardness profiles across e-beam weld metal SEM-BSE images after optimized PWHT
As e-beam weld i Middle of ;z:::; | . % ,Base metal
; the weld [mm] B
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FY13 Milestones & Status

 Characterize multi-pass welded Grade 91 steel (December 2012).
— Status: Met

 Rank initial oxidation results of Al-containing 9Cr steel (March 2013).
— Status: Met

« Complete short-time stress-rupture tests (June 2013).
— Status: Met

« Complete correlation of microstructure with creep strength for synchrotron diffraction
specimens (September 2013).

— Extended to the end of FY16 since the creep-rupture tests are still in progress and
more than 20,000h of additional testing will be required to be completed
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FY14 Milestones & Status

« Complete optimization of TMT on Grade 91 steel (March 2014)
— Status: Met

 Assess mechanical properties of TMT Grade 91 steel (September 2014)
— Status: Met

Three proceedings papers have been published:

Y. Yamamoto, M.L. Santella, X. Yu, S.S. Babu, “Effect of Non-Standard Heat Treatments on Creep Performance of Creep-
Strength Enhanced Ferritic (CSEF) Steel Weldments,” in Proceedings of the 7th International Conference on Advances in
Materials Technology for Fossil Power Plants (Oct. 22-25, 2013, Waikoloa, HI), eds. D. Gandy and J. Shingledecker, ASM
International, Materials Park, OH (2014), pp. 1016-1024.

X. Yu, Z. Feng, Y. Yamamoto, “In-Situ Full Field Creep Deformation Study of Creep Resistant Materials Welds,” in Proceedings
of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants (Oct. 22-25, 2013, Waikoloa,
HI), eds. D. Gandy and J. Shingledecker, ASM International, Materials Park, OH (2014), pp. 1432-1440.

Y. Yamamoto, X. Yu, S.S. Babu, “Improvement of Creep Performance of Creep Strength Enhanced Ferritic (CSEF) Steel
Weldments through Non-Standard Heat Treatments,” S2-1 ETS 2014-1009, in Proceedings of the ASME Symposium on
Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries (March 25-27, 2014, Seattle,
WA), ASME (2014).
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Summary
Optimization of HT:

— New TMT approaches: Aus-forging & aus-aging evaluation

 Successfully improved cross-weld creep properties with decent room
temperature toughness of the base metal

 Feedback from Non-standard HT study supported the idea of the strengthening
mechanism

New Alloy Development :

— Weldment development of a new high-Cr ferritic steel, under a
collaboration with Forschungszentrum Julich (FZJ) GmbH, Germany.

o FZJ student worked at ORNL in a collaborative effort

 Optimization of Pre-/Post- E-neam Weld Heat-Treatment in Progress
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Future Work In FY14

FY14:
Wrap up the study of the 9Cr steel weldments on September 2014

— Microstructure characterization will be performed to investigate the microstructure-
property relationship

— Several creep-rupture tests (selected TMT base metals and weldments) will be
continued
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Materials/HT Used in This Study

Table: Chemical composition of the alloy studies (Grade 91, #30176)

---ﬂ
Base 0.08 027 011 861 089 009 021 007 0.06 <0.001

Filler 0.08 041 031 862 092 015 024 008 0.04 <0.001
*From computational thermodynamics: A,,=~820°C, A_,= ~860°C

Table. Temperature range of standard HT (ASME SA213, SA335, SA387) and current study

Standard Current Study

Normalize 1040-1080°C 1050°C
Temper 730-800°C 600, 650, 700, 760, or 800°C
PWHT 730-775°C** 760 or 800°C

" ~790°C, if 1 < (Mn + Ni) < 1.5; ~800°C, if (Mn + Ni) < 1.
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