2014 NETL Crosscutting Research Review Meeting Sheraton Station Square Hotel Pittsburgh, PA

DISTRIBUTED FIBER OPTIC SENSOR FOR ON-LINE MONITORING OF COAL GASIFIER REFRACTORY HEALTH

DE-FE0005703

Zhihao Yu, Anbo Wang Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 zhyu@vt.edu, awang@vt.edu http://photonics.ece.vt.edu/

1

<u>Outline</u>

- Motivation and Objectives
- Background and Fundamental
 - Technology
- Project Progress
- Summary

MOTIVATION AND OBJECTIVES

Motivation

- Refractory health monitoring in slagging coal gasifiers:
 - Rapid corrosion of refractory materials.
 - High-temperature reducing environment.
 - Difficult to predict remaining refractory life.
 - Localized thinning, spallation and cracking.
 - Expensive to shut down gasifier for repair.

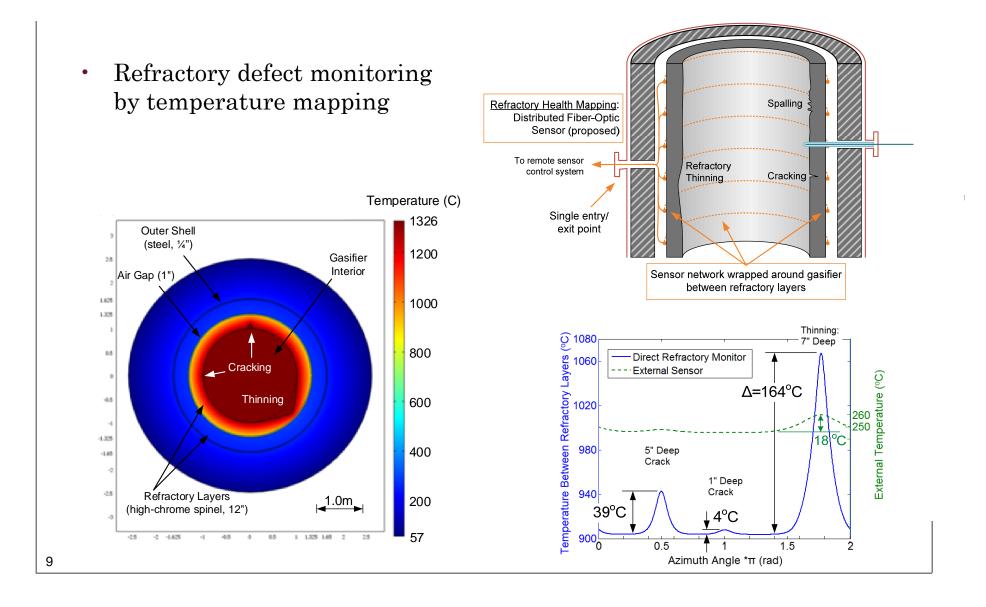
Impacts

- Current gasifier operation strategy:
 - Scheduled inspection & replacement of liners.
 - Conservatively short intervals increased downtime
 - Difficult to predict wear rate.
 - Re-bricking takes up to 3 weeks and \$1-2M, and downtime costs even more.
- New technology will enable:
 - Early detection & location of hot-spots.
 - Estimation of remaining lifetime.
 - Allow conditions-based maintenance model.
 - Reduced downtime & cost savings.

Project Overview & Objectives

- Three-year project beginning 5/1/2011.
- Industrial collaborator Eastman Chemical Co. assists in developing technical requirements.
- Objectives:
 - Develop a first-of-a-kind distributed hightemperature sensing platform.
 - Demonstrate potential for coal gasifier refractory health monitoring.
 - Potential operation at the back side of inner-most gasifier refractory wall.
 - Direct mapping of temperature profile.

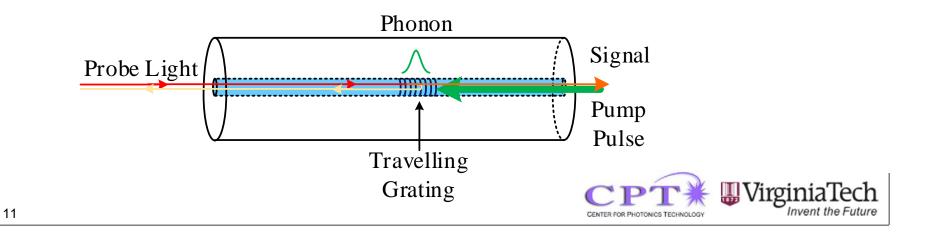
BACKGROUND AND FUNDAMENTAL TECHNOLOGY



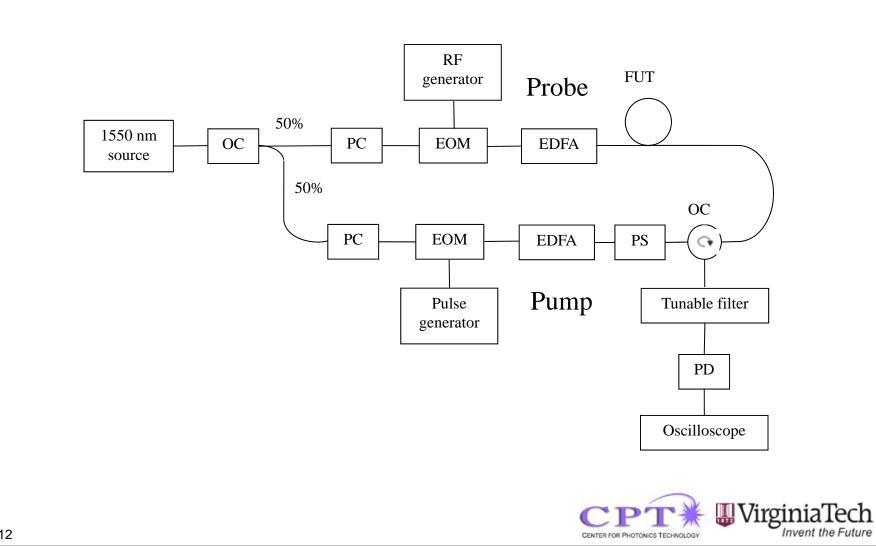
Light-induced Traveling Fiber Grating

- A strong pulsed light as pump and a weak CW light as probe are injected into the sensing link, counter-propagating.
- The beat note of the pump induces a transient grating which scans along the sensing fiber.
- The signal light probes the travelling fiber grating and translates the temperature distribution along the fiber from spectral shift changes in time domain.

Gasifier Refractory Health Monitoring

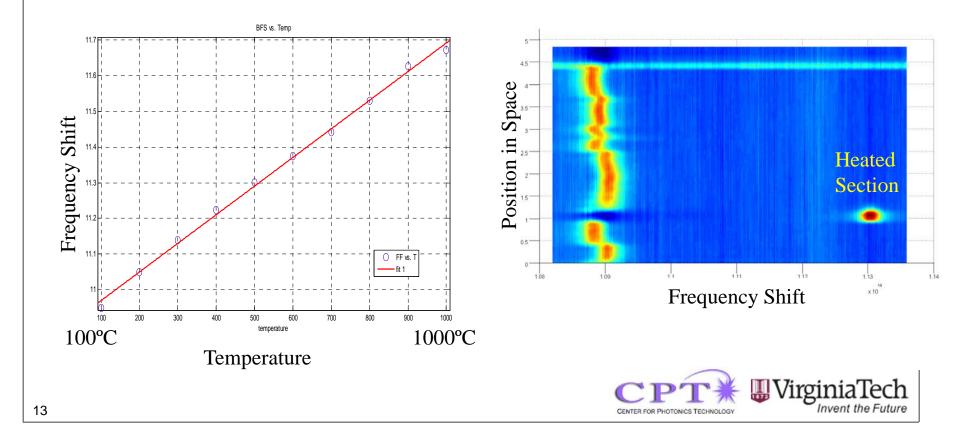


PROJECT PROGRESS

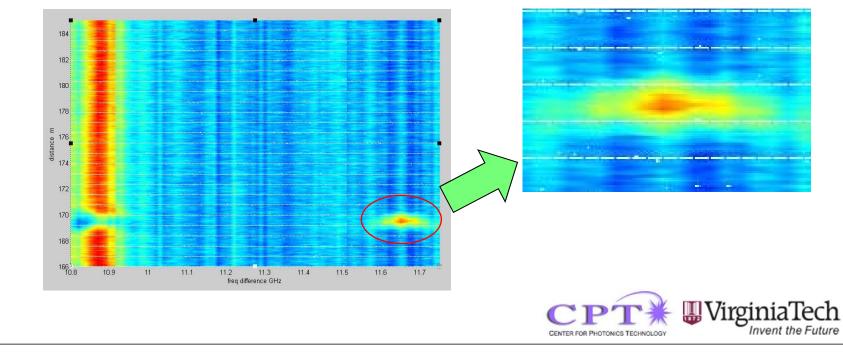


Sensing Mechanism

- Electrostriction phonon induced transient periodic refractive index change is chosen as the mechanism to generate the travelling fiber grating.
- With an intense pulsed light, the pulses generates acoustic gratings as they propagate along the sensing fiber, also known as Stimulated Brillouin Scattering (SBS) effect.

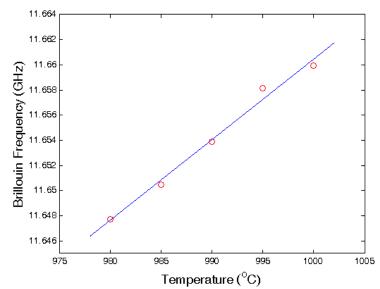


Optical Sensing System Designing


First Demonstration

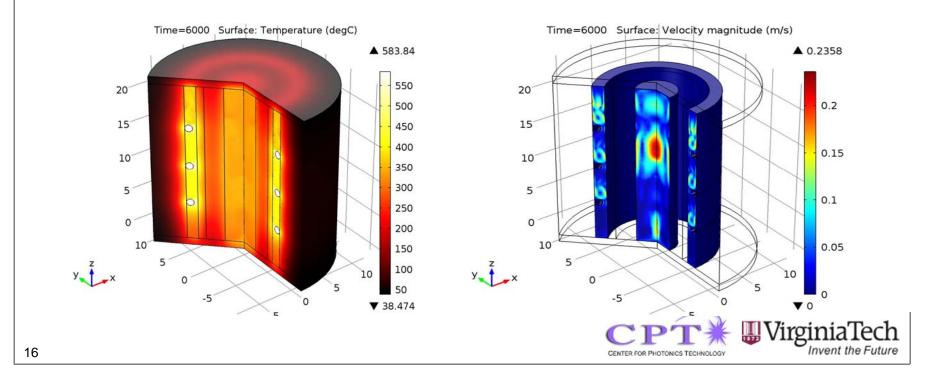
- First demonstration of temperature sensing
- 5m spatial resolution and 10°C temperature resolution achieved at 500°C

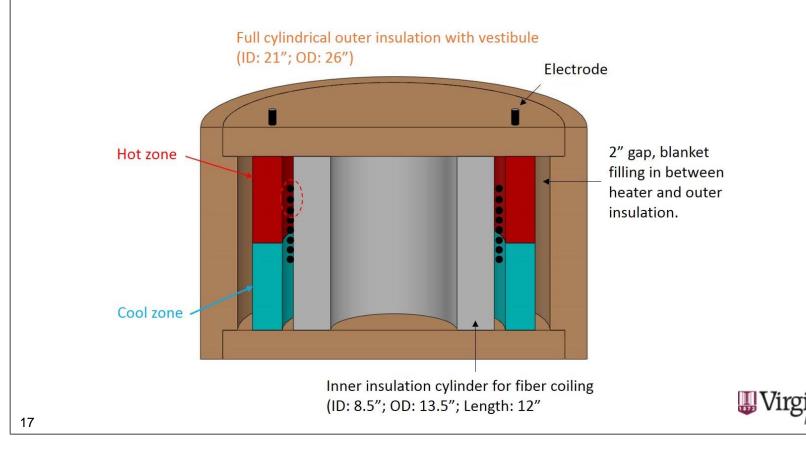
Sensitivity Optimization: Spatial Resolution


- Width of pump pulse and intensity of probe light optimized with the help of theoretical analysis
- Spatial resolution improved from 5m to 1m (over the span of 230m, at 1000°C)

14

<u>Sensitivity Optimization:</u> <u>Temperature Resolution</u>

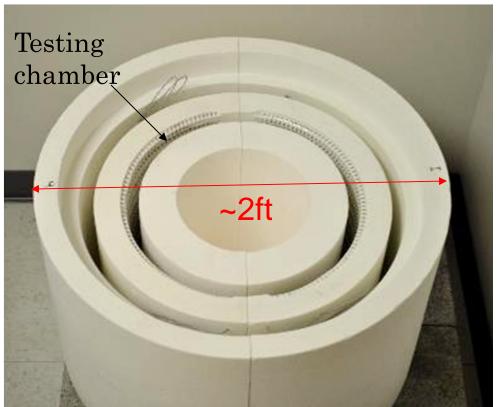

- Temperature demodulation algorithm improved
- Test environment temperature stabilized
- Temperature resolution of 5°C achieved at 1000°C with 1m spatial resolution.


Lab Test Environment Design

- Simulation for key parameters of
 - Furnace geometry
 - Power consumption
 - Heating element arrangement

Lab Test Environment Design

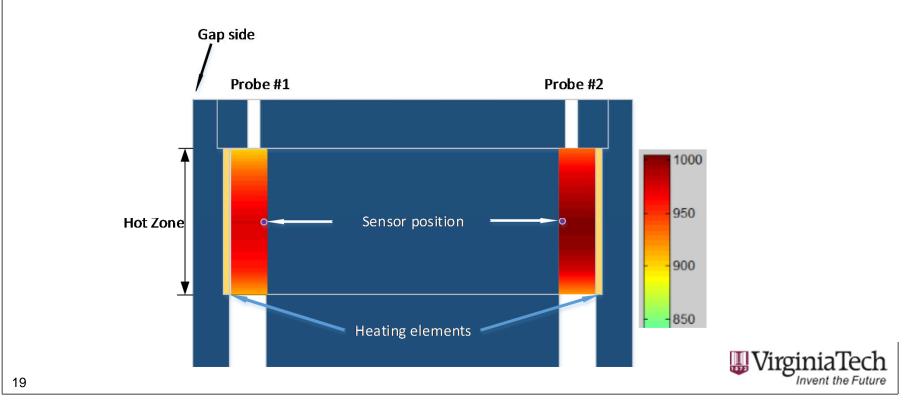
• Independent dual heating zone for temperature gradient simulation



Invent the Futur

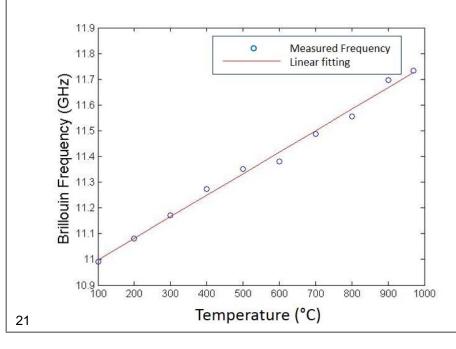
Lab Test Environment Building

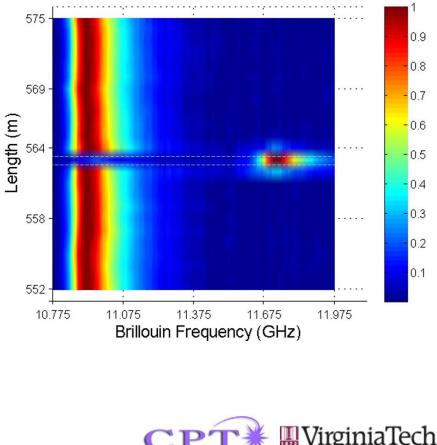
• Finished furnace assembly



Lab Test Environment Characterization

- Minor temperature difference observed due to a gap reserved for sensor leading-in and leading-out.
- $\sim 2^{\circ}$ C temperature stability at 1000°C


Sensor Packaging: Alloy Tubing


- Inconel 600 alloy tubes
 - No deformation
 - Oxidation on surface only

Preliminary Packaged Sensor Test

- 1m spatial resolution over the span of 600m achieved at 1000°C
- Sensor passed 36h annealing test at 1000°C

CENTER FOR PHOTONICS TECHNOLOG

Invent the Future

Next Steps

- Demonstrate temperature gradient measurement in the lab testing environment
- Improve sensor temperature response linearity

SUMMARY

<u>Tasks</u>

- 1. Project management and planning
- 2. Determine sensor technical requirements
- 3. Sensor design and refractory performance modeling
- 4. Demonstrate the chosen mechanism
- **5**. Develop distributed sensor prototype
- 6. Design and build test environment
- 7. Test sensor and evaluate performance
- 8. Prepare final report

Project Progress Summary

Project Start Date: 5/1/2011 Project End Date: 12/31/2014		Budget Period 1								Budget Per				od 2			
Task	Description	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11 (2	2 Q1	3 Q14	Start Date	End Date
1	Project Management & Planning		• •••		• • • •	••••	••••						-			2011/5/1	2011/9/30
2	Determine Technical Specifications															2011/5/1	2012/3/31
3	Sensor Design & Refractory Model		-										-		' '	2011/10/1	2013/6/30
3.1	Investigate various sensing mechanism	╽┝╸														2011/10/1	2012/9/30
3.2	Develop sensor design	│														2011/10/1	2012/9/30
3.2	Develp refractory model															2011/10/1	2013/6/30
4	Demonstrate the Choson Mechanism															2011/10/1	2013/6/30
5	Develop Sensor Prototype															2013/7/1	2014/3/31
5.1	Construct prototype sensor									<u> </u>						2013/7/1	2013/12/31
5.2	Calibrate & verify basic operation															2013/10/1	2014/3/31
6	Design & Build Test Environment	ΓL											_			2013/7/1	2014/6/30
7	Test & Evaluate Sensor											-			◆	2014/4/1	2014/9/30
8	Prepare Final Report															2014/10/1	2014/12/31
	Technical Progress Reports	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Ç	Q	F		
Project Milestone Umbrella Task										Budget Period					ן		
▼_	Linked Tasks: Application Info.	Task Continuation										No c	05	st exte			
	Reports: Q - Quarterly F - Final													1			

THE END

