Model-Based Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems

(PI) Raghunathan Rengaswamy Jeevan Maddala Parham Mobed

Texas Tech University

(CO-PIs) Debangsu Bhattacharyya (Speaker) and Richard Turton Pratik Pednekar West Virginia University

Sensor Network Design Problem

- Problem
 - Which variables to measure and where (if spatial variation considered)
 - Which physical sensors (with different properties, cost) should be used
 - How many sensors (hardware redundancy) should be used for measuring a variable
 - What should be the frequency of sampling (measurement) for different variables
 - Maintenance policies

Design as well as a Retrofit problem

Two-tier approach

<u>Tier 1 – Plant level</u>

<u> Tier 2 – Equipment Level</u>

Two-tier approach

- Maximizing efficiency of sensor network
- Resolve component-level faults while taking advantage of systemlevel interactions
- SP problem divided into two levels, solved, and then integrated.
- Use high fidelity models for component-level fault simulation

<u>Component level and system level for an</u> <u>IGCC plant with CO₂ Capture</u>

<u>Approach</u>

Tier 1: System Level Sensor Placement

System-level SP

- Qualitative approach: Has a fault occurred?
- Take advantage of the flowsheet connectivity
- No quantitative information of fault magnitude available

System-Level SP: General Strategy

Graph Based Approaches

DG Representation

DG

- Change in variable > Threshold
 → Assign "1"
- Otherwise → Assign "**0**"

SDG Representation

<u>SDG</u>

- Variable goes over threshold → Assign "1"
- Variable goes below threshold
 → Assign "-1"
- Otherwise → Assign "**0**"

Fault observability

- Observability → Only response, not the direction → Matrix from DG
- SDG carries same information $A = \begin{bmatrix} 1 & 0 & 0 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & 1 & \cdots & 1 \end{bmatrix}_{M \times N}$
- Faults must be observed by at least one sensor $x_1 + x_2 + x_3 + \dots + x_N \ge 1 \rightarrow b = \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix}$

Fault resolution

- Add $\binom{M}{2}$ pseudo faults
- <u>Pseudo-fault</u>: Symmetric difference of a pair of faults
- Symmetric difference:
 - From Venn diagram
 - Matrix from SDG

$$B_{ij} = A_i \cup A_j - A_i \cap A_j$$

- Constraint matrix
 - $A \rightarrow$ Augment observability and resolution
 - b → vector of ones

Integer Programming

Objective function

• Minimize sensor network cost

$$\min f = \sum_{j}^{N} w_{j} x_{j}$$

Constraint

• Observability and resolution $Ax^T \ge b$

Decision variables

- Binary → "1": Variable measured "0": Variable not measured
- Weight → Cost of measuring sensor

Fault Simulation

Faults

- Type: Process knowledge/experience/open literature
- Magnitude: Designed/desired and tolerance

Results for plant wide sensor placement

Observability:

Sensor: Make-up solvent flow

Resolution:

<u>**DG</u>**: 4 Temperature sensors + 2 Flow sensors Irresolvable faults: 15 faults</u>

<u>SDG</u>: 2 Temperature sensors + 2 Flow sensors Irresolvable faults: 15 faults , same as DG

- Number of sensors reduced in SDG
- All faults are not resolvable by DG/SDG

Enhancement to these algorithms helps in resolving more faults

Magnitude Ratio Algorithm

Motivation

A = S1/S2 for F1 B = S1/S2 for F2
 Fault
 Sensor

 S_1 S_2
 F_1 1
 -1

 F_2 1
 -1

➤ A >>B

➢ B>>A

≻ A≅B≅1

17

Magnitude Ratio Algorithm

Magnitude ratio is defined as:

$$\mathbf{R_{ij}} = \frac{\mathbf{S_i} / \mathbf{S_{i,SS}}}{\mathbf{S_j} / \mathbf{S_{j,SS}}}$$

 $-R_{ij}$ is pair of all variables and treated as a pseudo-sensors

Magnitude ratio algorithm:

- Define: Threshold (λ)
- If $\mathbf{R}_{ij} > \lambda$, assign "1"
- If $\mathbf{R}_{ij} < 1/\lambda$, assign "-1"
- Otherwise, assign "0"

Magnitude Ratio Algorithm

- $-\binom{N}{2}$ pseudo sensors added to the decision variables
- Cost of the pseudo-sensors is set to zero
- Constraints:

$$(1 - x_i) + (1 - x_j) + x_{ij} \ge 1$$

 $(1 - x_{ij}) + x_i \ge 1$
 $(1 - x_{ij}) + x_j \ge 1$

Further Enhancement to SDG Algorithm

Fault evolution sequence algorithm

- Fault response sequence
- Comparing sequence of pairs can help in resolving faults

Fault	Sequence	Pairs
F1	S ₁ S ₃ S ₂ S ₄	$ \{S_1, S_3\} \{S_1, S_2\} \{S_1, S_4\} \\ \{S_3, S_2\} \{S_3, S_4\} \{S_2, S_4\} $
F2	$S_1 S_2 S_3 S_4$	$ \{S_1, S_2\} \{S_1, S_3\} \{S_1, S_4\} \\ \{S_2, S_3\} \{S_2, S_4\} \{S_3, S_4\} $

Magnitude Ratio Results

CSTR system

Algorithms	Sensors	Irresolvable	
SDG	$[T_{c'}VT,VP], C_A$	1 fault	
FES	[T _c ,VT,VP]	1 fault ⊆ SDG	
MR	[T _c ,VT,VP]	[]	
FES & MR	[T _c ,VT,VP]	[]	

Five-tank

Algorithms	Sensors	Irresolvable	
SDG	[L2,F10],L5,L4	1 fault	
FES	[L2,F10],F12	[]	
MR	[L2,F10],L5	[]	
FES & MR	[L2,F10]L5	[]	

Magnitude Ratio Results

TE process

Alg.	Sensors	Irresolvable
SDG	[F1,F9,F11,Tcs,VLs,VLp],F10,F2,Tcr <u>5 Flow, 2 Temp. and 2 Level Sensors</u>	10 fault sets
FES	[F1,F9,F11,Tcs,VLs,VLp],F10,Pr <u>4 Flow, 1 Temp. , 2 Level and 1 Pressure Sensors</u>	6 fault sets ⊆ SDG
MR	[F1,F9,F11,Tcs,VLs,VLp],Pr <u>3 Flow, 1 Temp., 2 Level and 1 Pressure Sensors</u>	Same as FES
FES&MR	[F1,F9,F11,Tcs,VLs,VLp],Pr <u>3 Flow, 1 Temp., 2 Level and 1 Pressure Sensors</u>	Same as FES

Tier II: Distributed Sensor Placement

Component-level SP

- Interested in condition monitoring
- Faults cannot be resolved from a system-level scope
- Estimation of unmeasurable states

Component-level SP algorithm

Water gas shift reactor (WGSR)

- 1st principle, 1-D, PDAE model developed using conservation equations in MATLAB
- Reaction kinetics obtained by data reconciliation from erroneous / noisy data from literature
- Simulate faults such as catalyst deactivation over time

Model Summary

- Total equations : 76
 - 53, differential
 - 23, algebraic
- Hence the system becomes a DAE system
- Total states are 76
- The equations are solved in MATLB with ODE15S

Estimator

- State Estimation
 - Process models is nonlinear with a system of differential and algebraic equations (DAE)

- > Nonlinear estimator that can handle DAE systems is required
 - Extended Kalman filter for DAE systems

Summary of State Estimation

• DAE system is linearized at each time step as:

$$\begin{cases} \dot{x} = Ax + Bz \\ 0 = Cx + Dz \end{cases} \rightarrow \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & B \\ -D^{-1}CA & -D^{-1}CB \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$

• Prediction and update steps of EKF for DAE systems:

Fault Simulations

- Porosity of the catalyst bed \rightarrow modify ϵ
- Catalyst deactivation → change the pre-exponential factor at specific location of the reactor
- Change in surface area of the catalyst leading to changes in the effectiveness factor

Estimation of states in presence of noise

Problem formulation for optimization

• At each time step, a noisy measurement of the states are made:

 $y_k = Hx_k + v_k$

• where, *H* matrix is constructed from a binary vector

 $\begin{bmatrix} 1 & 0 & 0 & 1 & . & . & 0 & 1 & 1 \end{bmatrix}$

- The binary vector contains the sensors information:
 - Location
 - Number
 - Туре
- Search space for measurement model is huge (2⁴⁰⁰)
- Evolutionary algorithm can help us surf the space to find optimal model
- Genetic Algorithm!

Genetic Algorithm

Simulation

- The nonlinear system is simulated with ramp disturbances which includes:
 - 5% increase in inlet temperature (from 550 to 575.5 K)
 - 20% increase in syngas CO mole fraction (from 0.31 to 0.372)
- The system is simulated with the following specifications:
 - Process noise: 10⁻²
 - Concentration, pressure and temperature measurement noise: 10⁻²
 - Error covariance: 10⁻⁴

Genetic Algorithm

• The fitness function, as reported previously, is calculated as:

$$e_{total} = \sum_{1}^{707} (x_{estimated} - x_{actual})^2$$

Fitness = exp(-e_{total})

• Fitness function is normalized by the fitness of the individual where all states are measured.

Normalized Fitness =
$$\frac{\exp(-e_{total,100 \ sensors})}{\exp(-e_{total,607 \ sensors})}$$

GA Results

• Value 1, shown as a bar, indicates that a sensor has to be placed at the specified location of the reactor

• The figure is prepared with information from current generation of the GA algorithm.

Sensor locations on the dimensionless reactor length after 470 generations

GA results

- A fixed number of sensors (=100) is assumed and the genetic algorithm is run to find best combination of the sensors.
- The fitness is normalized with the case that all measureable states are measured.

Distributed Sensor Placement In Gasifier

Gasifier-Model

- Gasifier operates at temperatures of about 1200-1600°C
- Liquid slag flows on walls and is collected at bottom
- Gasifier model developed at WVU does not consider slagging phenomenon
- Slag penetration mainly responsible for refractory degradation

Two-stage model for slag deposition

1. Slag formation and detachment

2. Slag deposition and flow

Model Development

Slag formation on char particle

Slag deposition

Reaction Models Used in Non-Slagging and Slagging Gasifier Section

Integration of Continuum and Discrete Particle Phase

Gasifier Fault - Refractory Degradation

Bennett, J. "Failure Mechanisms in High Chrome Oxide Gasifier Refractories"; Metallurgical and Materials Transactions; 2011, 42, 4, pp. 888 - 904

www.netl.doe.gov

Scale, cm

Compressive Spalling

- Fe³⁺/Cr³⁺ substitution
- Results in Buckling

Tensile Spalling

- Cr³⁺ migration
- Cracked structure

Results : Gasifier

Steady state temperature profile

Testing: Base, Thermal Cycling, High and Low Case

- Coal slurry SP was oscillated using sinusoidal function with period of 1 hour
- Slag model wall temperature was found for this input and fit
- Wall temperature was used as boundary condition for Refractory Degradation model
- Gasifier model and Degradation model operate at different time scales

Results : Refractory Spalling time

Future work

- Develop a reduced order gasifier model for estimation
- Implement distributed sensor placement algorithms on the gasifier
- Integrating the gasifier model into the gasification Island
- Perform two tier sensor placement algorithm

Model

Acknowledgment

The authors gratefully acknowledge support from NETL DOE through grant no. **DE-FE0005749** titled "Model-Based Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems"