
1

Intrinsic Fiber Optic Chemical Sensors 
for Subsurface Detection of CO2

Intelligent Optical Systems, Inc.

Jesús Delgado Alonso, PhD
Robert A. Lieberman, PhD 

DOE Technical Monitor: Barbara Carney



2

Intelligent Optical 
Systems, Inc. (IOS)

 Founded in April, 1998
 Focus areas: 

 Physical, chemical, and biomedical 
optical and electronic sensors

 Advanced light sources and detectors
 >$3.5M in equipment
 11,500 sq. ft. facility in Torrance, CA
 Several spin-off companies with >$22M in 

private funding
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Problem/Opportunity

Reliable and cost-effective monitoring is important to 
making gas sequestration safe

Desirable analytical systems characteristics:
 Provide Reliable Information
 Monitor continuously
 Cover large areas
 Operate for years with little or no maintenance
 Cost effective
 Differentiate between CO2 variations due to natural processes and those 

due to leaks of exogenous gas
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Technology

Distributed intrinsic fiber optic sensors for the direct
detection of carbon dioxide.

Unique characteristics:
 Direct measurement of CO2

 The entire length of an optical fiber 
is a sensor

 Sensors are capable of monitoring 
CO2 in water and in gas phase

 A single cable may include CO2, 
pH, salinity, and temperature 
sensors.
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 A silica glass core fiber is coated with a polymer cladding containing a 
colorimetric indicator

 Upon exposure of any segment of the fiber, the CO2 diffuses into the cladding 
and changes color

 A change in fiber attenuation at wavelengths relating to the color change is 
detected.

(Left) Fiber structure of colorimetric distributed fiber optic sensors; (right) fiber optic CO2 sensor rolled onto a spool. 
Microscopic detail shows uncoated fiber, and fiber coated with the sensitive cladding.

Technology
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 The extent of color change (or attenuation change) depends on the
concentration of CO2, and is reversible

 Wavelengths far from the absorbance of the indicator dye are unaffected by the
presence of CO2, which enables the system to be self-referenced.
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Wavelengths far from the absorbance of the indicator dye are 
minimally, or completely, unaffected by the presence of CO2, enabling 
the system to be self-referenced.
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In sensor system deployment, the sensor fibers must be mechanically 
protected within a cable, while simultaneously allowing the free exchange of 
gases and water between the environment and the sensor fibers.

Technology: 
Sensor Protection for Field Deployment
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Phase I
 Development of advanced intrinsic fiber optic sensors and readout 

(length up to 2,500 ft. and able to withstand corrosive liquids).

 Sensor evaluation and demonstration in simulated subsurface 
conditions.

Phase II

 Subsurface sensor deployment and operation (in a 5,900 ft. deep well 
at up to 2,000 psi).

Phase III

Project Phases
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Develop an optoelectronic unit for remote operation.
Preliminary design – select zone-by-zone or OTDR approach based on 
cable range and cable coverage.

Zone-by-zone: 
Better sensitivity 
Longer range

OTDR:
Better spatial resolution 

Progress: Optoelectronic Unit



14

The zone-by-zone approach was selected based on calculations that 
showed the feasibility of this design in meeting the cable range
requirement (up to 2,500 ft.).
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Progress: Optoelectronic Unit, Cable Range
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Films coated on glass slides Fiber optic sensor prototypes

1. Fabrication of films
2. Evaluation of optical and 

chemical properties
3. Selection of candidate 

formulations
4. Fabrication of fiber sensor
5. Preliminary testing
6. Further characterization/ 

fabrication of films

Progress: Advanced Sensor Materials
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 Transmission

 Sensitivity and reversibility

 Thermal stability
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 Resistant to water immersion

 Chemical stability

 Attachment to glass

Progress: Advanced Sensor Materials
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In the production of sensor prototypes, we 
use pre-fabricated silica glass "thread" as the 
core material, and apply the polymer cladding to 
the fiber with an optical fiber spooling machine, 
custom-built for fiber coating applications.

Glass 
core

Polymer 
cladding

Uncoated 
fiber

Coated 
fiber

Progress: Fiber Optic Sensor Production
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Fiber sensor at 
ambient 

conditions

CO2 CO2

Progress: Sensor Testing

V1 V2
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Gas/water input

Gas/water output

Fiber optic 
sensor 
segment

Progress: Sensor Testing
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As expected, sensitivity is 
reduced with increased 
temperature. 

Progress: Sensor Testing at Elevated 
Temperature, Gas Phase
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Test Progress
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 Fiber sensors withstand 120°C
 Significant degradation at 150°C
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 The fiber sensors are exposed to 
cycles of elevated temperature 
and ambient temperature.

Progress: Sensor Testing at Elevated 
Temperature, Gas Phase
Accelerated Degradation Test
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Test Progress
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 Improved sensor formulations are 
stable at 70°C, the maximum 
temperature tested.

 Tests at higher temperatures must be 
conducted at pressure.

Progress: Sensor Testing at Elevated 
Temperature, Dissolved CO2

Accelerated Degradation Test

Test Progress
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Response profiles of a CO2 fiber optic prototypes
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four levels of CO2

Corrosive liquids: 
Acid matrix (pH = 4.0)

Standard conditions: 
Sensitivity, reversibility, measurement range
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Progress: Sensor Testing at Extreme 
Conditions, Dissolved CO2
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Corrosive liquids: 
Traces of NOx or SOx (40 ppm NO2)
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Corrosive liquids: 
High salinity (250,000 ppm NaCl)
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Progress: Sensor Testing at Extreme 
Conditions, Dissolved CO2
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Ongoing and Planned Work

 Perform Accelerated Degradation Testing
 High flow rates of corrosive water, exposure to highly biologically-

contaminated media, exposure to temperature cycles, exposure to high 
power illumination…

 Evaluate sensors at elevated pressure

 Perform analytical characterization of sensor system
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 Design and test sensor cables
 Design and assemble sensor 

deployment system
 Sensor deployment and validation in the 

field.

Proposed CO2 Sensor Well Number DOE-1

Well Test Configuration

20" 65#, H Conductor Pipe 150'
@150' in 26" hole

13 3/8" 54#, K-55 Surface Casing 
@1500' in 17 1/2" hole 1500'
Cemented to Surface

9 5/8" 53.5#, N80 Casing
@5350' in 12 1/4" hole
Cemented to Surface

Fiber Optic CO2 Sensor Cable

1/4in Stainless Tubing
Adjustable Depth for CO2 Injection

Plugged Back Depth 5250'

Ongoing and Planned Work
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 A fiber optic sensor for CO2 monitoring in gas phase, capable of 
operating at elevated temperatures, has been demonstrated.

 A fiber optic sensor for dissolved CO2 monitoring in aqueous 
matrixes, capable of operating in corrosive environments and at 
elevated temperatures, has been demonstrated.

 Instrumentation demonstrating satisfactory performance while 
operating sensor cables 2 km long has been developed. Calculations 
predict continued good performance for sensors 3 km and even longer.

 Test at elevated pressure will be performed in the following months.

 The project is on schedule, and there is no technical 
impediment  to conducting downhole monitoring

Conclusions
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The Oil Industry is watching THE 
PROJECT...

Shell : There is a high level of interest in 
you company CO2-related projects

Conclusions
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Intelligent Optical Systems, Inc.: Sensor development
Jesús Delgado Alonso and Robert A. Lieberman

Bureau of Economic Geology at UTA: Sensor field validation and modeling
Changbing Yang

GeoMechanics Technologies: Downhole sensor deployment
Michael S. Bruno

Benson Laboratory at Stanford University: Sensor laboratory testing
Prof. Sally Benson and Ferdinand F. Hingerl

Montana State University (ZERT): Sensor field validation
Kevin Repasky

NETL Department of Energy
Barbara Carney, Robie Lewis, Robert Noll, Joshua Hull
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