

Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of CO₂

Intelligent Optical Systems, Inc.

Jesús Delgado Alonso, PhD Robert A. Lieberman, PhD

DOE Technical Monitor: Barbara Carney

Intelligent Optical Systems, Inc. (IOS)

- Founded in April, 1998
- Focus areas:
 - Physical, chemical, and biomedical optical and electronic sensors
 - □ Advanced light sources and detectors
- >\$3.5M in equipment
- □ 11,500 sq. ft. facility in Torrance, CA
- Several spin-off companies with >\$22M in private funding

Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of CO₂

- Technology
- History and Objectives
- Project Phases
- Progress
- Planned Work
- Conclusions

Problem/Opportunity

Reliable and cost-effective monitoring is important to making gas sequestration safe

Desirable analytical systems characteristics:

- Provide Reliable Information
- Monitor continuously
- Cover large areas
- Operate for years with little or no maintenance
- Cost effective
- Differentiate between CO₂ variations due to natural processes and those due to leaks of exogenous gas

Distributed intrinsic fiber optic sensors for the direct detection of carbon dioxide.

Unique characteristics:

- Direct measurement of CO₂
- The entire length of an optical fiber is a sensor
- Sensors are capable of monitoring
 CO₂ in water and in gas phase
- A single cable may include CO₂,
 pH, salinity, and temperature sensors.

- A silica glass core fiber is coated with a polymer cladding containing a colorimetric indicator
- Upon exposure of any segment of the fiber, the CO₂ diffuses into the cladding and changes color

Coated Fiber

Bare Fiber

 A change in fiber attenuation at wavelengths relating to the color change is detected.

(Left) Fiber structure of colorimetric distributed fiber optic sensors; (right) fiber optic CO₂ sensor rolled onto a spool. Microscopic detail shows uncoated fiber, and fiber coated with the sensitive cladding.

- The extent of color change (or attenuation change) depends on the concentration of CO₂, and is reversible
- Wavelengths far from the absorbance of the indicator dye are unaffected by the presence of CO₂, which enables the system to be self-referenced.

Wavelengths far from the absorbance of the indicator dye are minimally, or completely, unaffected by the presence of CO₂, **enabling the system to be self-referenced.**

Technology: Sensor Protection for Field Deployment

In sensor system deployment, the sensor fibers must be **mechanically protected within a cable**, while simultaneously allowing the **free exchange of gases and water** between the environment and the sensor fibers.

Project History

Project Objectives

Project Phases

Phase I

□ Development of advanced intrinsic fiber optic sensors and readout (length up to 2,500 ft. and able to withstand corrosive liquids).

Phase II

 Sensor evaluation and demonstration in simulated subsurface conditions.

Phase III

■ Subsurface sensor deployment and operation (in a 5,900 ft. deep well at up to 2,000 psi).

Progress: Optoelectronic Unit

Develop an optoelectronic unit for remote operation.

Preliminary design – select **zone-by-zone** or **OTDR** approach based on cable range and cable coverage.

Progress: Optoelectronic Unit

The **zone-by-zone** approach was selected based on calculations that showed the feasibility of this design in meeting the *cable range* requirement (up to 2,500 ft.).

Progress: Optoelectronic Unit

Progress: Optoelectronic Unit, Cable Range

Fiber optic sensor cable with length of 2,100 m (6,890 ft.)

Average $(5\% CO_2) = 0.6223 V$

Standard Deviation (n=25) = 0.0005 V

Noise to Signal = 0.08%

Progress: Advanced Sensor Materials

Films coated on glass slides

Fiber optic sensor prototypes

- Fabrication of films
- 2. Evaluation of optical and chemical properties
- 3. Selection of candidate formulations
- Fabrication of fiber sensor
- 5. Preliminary testing
- 6. Further characterization/ fabrication of films

Progress: Advanced Sensor Materials

Transmission

- Sensitivity and reversibility
- Attachment to glass
- Chemical stability
- Resistant to water immersion

Thermal stability

Progress: Fiber Optic Sensor Production

In the production of sensor prototypes, we use pre-fabricated silica glass "thread" as the core material, and apply the polymer cladding to the fiber with an optical fiber spooling machine, custom-built for fiber coating applications.

Progress: Sensor Testing

<u>V1</u>

<u>V2</u>

Progress: Sensor Testing

Gas/water input

Gas/water output

Progress: Sensor Testing at Elevated Temperature, Gas Phase

Temperature 80°C

As expected, sensitivity is reduced with increased temperature.

Temperature 100°C

Progress: Sensor Testing at Elevated Temperature, Gas Phase Accelerated Degradation Test

- Fiber sensors withstand 120°C
- Significant degradation at 150°C

 The fiber sensors are exposed to cycles of elevated temperature and ambient temperature.

Progress: Sensor Testing at Elevated Temperature, Dissolved CO₂ Accelerated Degradation Test

- Improved sensor formulations are stable at 70°C, the maximum temperature tested.
- Tests at higher temperatures must be conducted at pressure.

Progress: Sensor Testing at Extreme Conditions, Dissolved CO₂

Standard conditions:

Sensitivity, reversibility, measurement range

Corrosive liquids:

Acid matrix (pH = 4.0)

Response profiles of a $\rm CO_2$ fiber optic prototypes immersed in a pH 4.0 solution equilibrated with four levels of $\rm CO_2$

Progress: Sensor Testing at Extreme Conditions, Dissolved CO₂

Corrosive liquids:

High salinity (250,000 ppm NaCl)

Response profiles of CO_2 fiber optic prototypes immersed in a 250,000 ppm NaCl solution equilibrated with four levels of CO_2 .

Corrosive liquids:

Traces of NOx or SOx (40 ppm NO₂)

Response profiles of CO_2 fiber optic prototypes immersed in solution before and after equilibration with traces of NO_2 (40 ppm) and equilibrated with three levels of CO_2 .

Ongoing and Planned Work

- Perform Accelerated Degradation Testing
 - High flow rates of corrosive water, exposure to highly biologicallycontaminated media, exposure to temperature cycles, exposure to high power illumination...
- Evaluate sensors at elevated pressure

Perform analytical characterization of sensor system

Ongoing and Planned Work

- Design and test sensor cables
- Design and assemble sensor deployment system
- Sensor deployment and validation in the field.

Conclusions

- □ A fiber optic sensor for CO₂ monitoring in gas phase, capable of operating at elevated temperatures, has been demonstrated.
- A fiber optic sensor for dissolved CO₂ monitoring in aqueous matrixes, capable of operating in corrosive environments and at elevated temperatures, has been demonstrated.
- Instrumentation demonstrating satisfactory performance while operating sensor cables 2 km long has been developed. Calculations predict continued good performance for sensors 3 km and even longer.
- □ Test at elevated pressure will be performed in the following months.
 - The project is on schedule, and there is no technical impediment to conducting downhole monitoring

Conclusions

The Oil Industry is watching THE PROJECT...

Shell: There is a high level of interest in you company CO2-related projects

Participants

Intelligent Optical Systems, Inc.: Sensor development

Jesús Delgado Alonso and Robert A. Lieberman

Bureau of Economic Geology at UTA: Sensor field validation and modeling

Changbing Yang

GeoMechanics Technologies: Downhole sensor deployment

Michael S. Bruno

Benson Laboratory at Stanford University: Sensor laboratory testing

Prof. Sally Benson and Ferdinand F. Hingerl

Montana State University (ZERT): Sensor field validation

Kevin Repasky

NETL Department of Energy

Barbara Carney, Robie Lewis, Robert Noll, Joshua Hull