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NETL Strategies to Mitigate Materials Degradation
under Harsh Service Conditions
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Low lemperature
Dew Point Corrosion

— Extreme environment (corrosive,T,P)
— Components have to last up to 300,000 hours
» Lack of experience with alloy performance in these conditions

An integral computational and experimental approach to
mitigate materials degradation

N=TL



Life Prediction: Microstructural Evolution

Subgrain, precipitate, and dislocation structure
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Life Prediction: Microstructural Evolution

Subgrain, precipitate, and dislocation structure
As tempered
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" Microstructural evolution is inevitable
|5 for the high temperature FE
environment, the only option left to
extend the life of a material is to slow
down this process
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Three most important things to slow down microstructure evolution:

Precipitates, precipitates, and precipitates!

P

Precipitates Pin Boundaries & Stabilize Structure as well as
Hindering Dislocation Motion



NETL Microstructural Stability
Focused Areas of Modeling

Precipitation

2"d Phase Pinning

Ni-10Al-15Fe (x5000]

Metal Oxidation

Matrix Strength

Grain Boundary Strength

Surface Attack
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NETL Microstructural Stability
Focused Areas of Modeling

Ni-10Al-15Fe (x5000]

Precipitation 2"d Phase Pinning Oxidation

IPT Task 5.4 IPT Task 5.3
Microstructure Modeling Oxidation Modeling
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NETL Microstructural Stability
Focused Areas of Modeling

Ni-10Al-15Fe (x5000]

1. Precipitation kinetics modeling
Pre on

2. Second phase pinning
3. Oxidation kinetics modeling
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The Precipitation Modeling
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The Precipitation Modeling

(Goal: Develop an engineering tool that can predict
precipitation process under representative
thermomechanical processing and service conditions

The Challenges

O High volume fraction of precipitates
excluding any analytical solutions

o Complex thermal heat treating & thermo
mechanical service condition

o Multi-component & multi-phase

Phase-field method has the potential M.E. Gurtin and PW. Voorhees.




NETL Multi-Component
Phase-Field Precipitation Model

1D, 2D, and 3D capability
Multi-Component: 7 components in present work
Two phases: yand y' in Ni-base superalloys

Direct link to CALPHAD Database: PanEngine from
CompuTherm



Haynes 282 Precipitation Kinetics
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Developing a Virtual Tool for Alloy Chemistry Screening



Precipitation Kinetics Modeling Results
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Summary of Precipitation Modeling

Developed a multicomponent Phase-Field
model that can simulate precipitation
kinetics in Ni-based commercial alloys

Demonstrated that this model has the
potential to be used for composition
screening for a more stable precipitation
microstructure



Second Phase Pinning Modeling

Inhibit GB
Migration

Control Grain
‘ Size ‘

655h Gauge (Ruptured)

Carbide Precipitations in 9Cr Steel

Materials Strengthening
Hall-Petch Relation

Courtesy of Mitsu
Murayama at VirginiaTech

Second Phase Particles are not Spherical!
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Particle Pinning Process

old grain

particle

moving GB t

new grain
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Zenner Particle Pinning Theory

old grain

F, =2,y cosdsin g

particle

Fzmax — . }/

 Spherical second phase particle
 [ncoherent interfaces

These two constraints are relaxed in this project

N=TL



New Theory and Validation for Ellipsoid Particles

Ellipsoid particles
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Phase-field Simulated GB Migration Behavior
(Incoherent & Coherent Interfaces)
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“Pinning force of grain boundary migration from a coherent particle,”
N. Wang, Y.H. Wen, and L.Q. Chen, Philosophical Magazine Letter, under review




Particle Spacing (Volume Fraction) Effect

/
17
Well separated: Close neighbor:
L >>2R L ~2R
O™ =rxl4 O™ <xl4

Cannot reach maximum pinning angle
due to the constraint of inter-particle surface shape
An analytical correction term is derived for the 2D case
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Pinning Force Correction at High Volume
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Correction to current pinning force theory at high
volume fraction validated against PF simulation

“Pinning force from multiple second-phase particles in grain growth,”
N. Wang, Y.H. Wen, and L.Q. Chen, Computational Materials Science, under review




Summary of 2" Phase Pinning Modeling

 Developed a first quantitative evaluation for
coherent particle pinning force for an ellipsoid
particle

 Proposed a large volume fraction pinning force
correction and verified via Phase-field
simulations

N=TL



Metal Oxidation Modeling

The Goal
Develop a modeling toolbox to link material’s
operating environment to its performance

Physics-Based

: Oxidation
Material & Modeling

its operating

condition Microstructure
Evolution

Materials
Performance
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Metal Oxidation Modeling

Length scale gap
Cabrera P (Debye length)
-Mott "5’% T e oo
Theory - o
Moderate
film thickness ™

(Atkinson, Review of Modern Physics, 1985)

Moderate film thickness regime:
The coupling of charge interaction,
ionic diffusion, and chemical reaction
has to be addressed.

INSTL



Progress on Oxidation Kinetics Modeling
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Electrostatic potential distribution in a
growing oxide film under different
ion/electron mobility ratios

 Developed an analytical model for the
electric field in the growing oxide for a
simpler prototype oxidation reaction

* Verified via comprehensive phase-field
modeling for more sophisticated cases.

* Revealed the electrostatic potential drop
across the bulk oxide is limited to ~k;T/e

[ ——— ])l/])l:l:l
------ D /D,=3:1
=== = D/D,=10:1

Electrostatic potential

T Cheng, Y Wen, J. Phys. Chem. Letter, under review



Efficient Algorithm to Solve Electrostatic Problems
B it ®
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Dielectrophoresis process with various inter-particle force and hydrodynamic effects



Summary of Oxidation Kinetics Modeling

 Developed a multiscale simulation capability based on
Phase-Field Method to solve the complex coupling
problem that involves transport of charged ions subject
to interfacial reactions and long range electrostatic
interactions

 Developed an efficient numerical algorithm to solve the
charge interaction problem with arbitrary heterogeneity
in electric properties

 Further development of the model is necessary to
advance this model into a useful tool that can be used to
predict the life of a complex alloy
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Roadmap to Oxidation Modeling

_ Component Life Prediction Mechanical
A physics- with representative response:
based composition/microstructure Spallation

oxidation under a specified modeling

model for pure AN environment
metals

Multi-oxidant‘ ‘ A physics-
(i.e., gas based oxidation

mixture) Microstructure model for

modeling  €ffectmodeling  gji5ys: transient
(€.g., voids, oxidation
precipitates, behavior
grain
boundaries

N=TL



Backup Slides
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Lattice Coherency of Pinning Particles

Coherency loss

Coherent Incoherent

- o

Surface energy ™ Vinc /7/coh >0 7/gb ~ Vinc
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interface

pinned GB

Incoherent grain 1

interface
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PFC Results of Coherent Particle Pinning

[ [1

Interaction between grain boundary and pinning particle under the
influence of interfacial energy only ; Incoherent (left) and coherent
(right

GB shape near a coherent particle with large lattice misfit



Lattice Misfit Effect on Particle Pinning
Phase-Field-Crystal (PFC) Modeling

F oo :j %[—g+(q2+v2)2]¢+%4 dv

@ —atomic density field; q is related to the lattice parameter

Atomic resolution with intrinsic elasticity and defects evolution;
ideal for modeling misfit strain effect on particle pinning
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Roadmap to Particle Pinning Modeling

Quantitative pinning force at Effect of lattice coherency (elastic
single particle level (Theory & PF) energy) on particle pinning (PFC)
Efficient and accurate Incorporation of coherent and

numerical scheme (PF) incoherent interfaces (PF)

) L 4

Large scale 3D grain growth (PF)

Goal: Quantitative understanding of particle pinning in grain growth



Multi-Component Multi-Phase Phase-Field Model

Multi-Component, Multi-Phase

Fle,n) = / Flesn) + £ 4 ..] dO

m
Kim-Kim-Suzuki(KKS) Model* f(e,n)=> mig'(c) Link to CALPHAD Database
v’ flexible interfacial energy . =1
v practical length scale C = ;nicf( Mass Conservation
ag? — ag ’ Equal Chemical Potential
8ck ack
Multiphase Model** m  m
v multiphase f(n) + Z Z W:ijn;;z”f?? Local Free Energy Barrier
i=1 j>i

v multi-variant m  m
d €ij 2
v poly-crystal ST =D 5 (m;Vni = m:V1;)"  Gradient Energy

=1 j>1

*Kim et al., Phys. Review E, 60(6), 7186(1999) ** Steinbach et al., Physica D, 94, 135(1996)



Phase-Field Model: (cont.)

Elastic Effect t due to Lattice Misfit

ij“m ij

Ei(j)o (m) =5.&20 =5 |:88.(X) aoax m] Vegard’s law
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d3 . 0 0 *
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Oxidation Model Description

(=1 =0
n=0 =1 l
Gas Metal :
! Symmetric
|
i
v 3 '
X, +(@m)e =aX™ M+aX"™ =MX_ +(am)e
d[X7] B d[X]_d[M] _
=k, p, ([XT-[X" _
ke (X - IXD)Ee] =S =k MIX ]
die’] N TV dle’] _
e (X T-[X1)le] o =k IMIIX ]

(cf. Standard Deal-Grove oxidation model)

Boundary condition:

Metal phase: electric field inside a conductor should be zero.

(large mobility electrons + background cations)
Gas phase: Diffusing species are prohibited to enter
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Governing Equations

Reaction Diffusion + Electromigration

1. oC L N e I
[X]' a_tlz: KI prgcz(Cl_Cl)_KuAnCl::+V'(D1VC1)_FV‘(D1C121E) [
[ 1 B '

[e]: 5C2 | — L ~ 11 e !
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The electric field, satisfying Poisson’s equation, is
solved by an efficient numerical scheme for
arbitrary dielectric heterogeneity
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Simulated Kinetics vs Wagner Theory
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